Browse Source

白色提纯版本处理

master
dongchangxi 7 months ago
parent
commit
2ce6f57510
  1. 17
      apps/fix_up_color_two.py
  2. 163
      apps/white_purification_v2.py

17
apps/fix_up_color_two.py

@ -143,8 +143,11 @@ def find_last_x(image, slope_threshold = 1000):
max_interval = current_interval.copy() max_interval = current_interval.copy()
max_x[x[i]] = slope max_x[x[i]] = slope
current_interval = [] current_interval = []
if not max_x:
# 尝试降低阈值重新计算
return find_last_x(image, slope_threshold=slope_threshold // 2)
print(max_x) print(max_x)
last_x = list(max_x)[-1] last_x = list(max_x)[-1]
last_y = max_x[last_x] last_y = max_x[last_x]
return last_x, last_y return last_x, last_y
@ -157,7 +160,7 @@ def find_last_high(image, slope_threshold = 2500):
#找到200以上的最高峰 #找到200以上的最高峰
max_y = 0 max_y = 0
max_i = 254 max_i = 254
for i in range(220, 255): for i in range(240, 255):
if hist[i] > max_y: if hist[i] > max_y:
max_y = hist[i] max_y = hist[i]
max_i = i max_i = i
@ -181,17 +184,17 @@ def find_last_high(image, slope_threshold = 2500):
max_interval = current_interval.copy() max_interval = current_interval.copy()
max_x[x[i]] = slope max_x[x[i]] = slope
current_interval = [] current_interval = []
#如果没有找到200以上很平,而且高度小于5000,就按220位置削平 #如果没有找到200以上很平,而且高度小于5000,就按240位置削平
if not find and hist[220] < 5000: if not find and hist[240] < 5000:
max_x[220] = hist[220] max_x[240] = hist[240]
print(max_x) print(max_x)
if len(max_x) > 0: if len(max_x) > 0:
last_x = list(max_x)[0] last_x = list(max_x)[0]
last_y = max_x[last_x] last_y = max_x[last_x]
if last_x < 220: if last_x < 240:
last_x = 220 last_x = 240
# last_y = max_x[last_x] # last_y = max_x[last_x]
else: else:
print(f'找不到200以上曲线较平的区间,使用254作为最高峰') print(f'找不到200以上曲线较平的区间,使用254作为最高峰')

163
apps/white_purification_v2.py

@ -0,0 +1,163 @@
import os.path
import shutil
import time
import argparse
import cv2
import numpy as np
from fix_up_color_two import remove_gray_and_sharpening
from ps_image_shadow_up_ag import photoshop_actions_emulation
def perceptual_adjustment(img, threshold=220, reduction=0.5):
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)
saturation_weights = 1 - (s.astype(np.float32) / 255 * 0.01)
adjusted_v = np.where(
v > threshold,
threshold + (v - threshold) * (1 - reduction * saturation_weights),
v
)
return cv2.cvtColor(cv2.merge([h, s, adjusted_v.astype(np.uint8)]), cv2.COLOR_HSV2BGR)
def process_image(input_path, output_path, threshold=210, reduction=0.6):
"""
"""
try:
img = cv2.imread(input_path)
if img is None:
raise ValueError("无法读取图像,请检查路径是否正确")
result = perceptual_adjustment(img, threshold, reduction)
cv2.imwrite(output_path, result)
print(f"处理成功,结果已保存到: {output_path}")
return True
except Exception as e:
print(f"处理失败: {str(e)}")
return False
def sigmoid(x, center=0.0, slope=10.0):
return 1 / (1 + np.exp(-slope * (x - center)))
def reduce_highlights_lab_advanced_hsvmask(img, highlight_thresh=220, strength=30, sigma=15):
"""
"""
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
V = hsv[:, :, 2].astype(np.float32)
mask = sigmoid(V, center=highlight_thresh, slope=0.05)
mask = np.clip(mask, 0, 1)
mask = cv2.GaussianBlur(mask, (0, 0), sigmaX=2)
mask_vis = (mask * 255).astype(np.uint8)
img_lab = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)
L, a, b = cv2.split(img_lab)
L = L.astype(np.float32)
L_blur = cv2.GaussianBlur(L, (0, 0), sigma)
L_detail = L - L_blur
L_dark = np.clip(L_blur - strength * mask, 0, 255)
L_new = np.clip(L_dark + L_detail, 0, 255).astype(np.uint8)
lab_new = cv2.merge([L_new, a, b])
result = cv2.cvtColor(lab_new, cv2.COLOR_Lab2BGR)
return result, mask_vis
def suppress_highlights_keep_texture(image_bgr, v_thresh=225, target_v=215, sigma=1):
""""""
image_hsv = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(image_hsv)
v = v.astype(np.float32)
v_blur = cv2.GaussianBlur(v, (0, 0), sigmaX=sigma)
detail = v - v_blur
# 构建 soft mask(0~1),用于动态压制
mask = (v_blur > v_thresh).astype(np.float32)
# weight 越大压得越狠
weight = np.clip((v_blur - v_thresh) / 20.0, 0, 1) * mask # 20 是压制带宽
#weight =weight*1.2
# 将亮度压到 target_v 的线性混合:
v_compress = v_blur * (1 - weight) + target_v * weight
v_new = v_compress + detail
v_new = np.clip(v_new, 0, 255).astype(np.uint8)
hsv_new = cv2.merge([h, s, v_new])
result_bgr = cv2.cvtColor(hsv_new, cv2.COLOR_HSV2BGR)
return result_bgr
def correct_light_again_hsv(image_path):
img = cv2.imread(image_path)
result, mask_vis = reduce_highlights_lab_advanced_hsvmask(
img,
highlight_thresh=230,
strength=7,
sigma=3
)
result_bgr= suppress_highlights_keep_texture(result)
output_image_path = image_path.replace(".jpg", "_light02.jpg")
cv2.imwrite(
output_image_path,
result_bgr
)
return output_image_path
def correct_texture_image(input_path,image_result_dir,output_path):
""""""
#input_path = os.path.join(image_in_dir, image_name)
image_name= input_path.split("/")[-1]
params = {
'threshold': 220,
'reduction': 0.6
}
image_cache_dir= os.path.join(image_result_dir,"cache")
os.makedirs(image_cache_dir, exist_ok=True)
out_put_path = os.path.join(image_cache_dir, image_name)
shadow_up_path = out_put_path.replace(".jpg", "_shadow_up.jpg")
photoshop_actions_emulation(input_path, shadow_up_path)
image_light_down_fix_up_path = remove_gray_and_sharpening(shadow_up_path, image_cache_dir)
output_light_up_path = image_light_down_fix_up_path.replace(".jpg", "_light_down.jpg")
process_image(image_light_down_fix_up_path, output_light_up_path, **params)
output_result_image_path=correct_light_again_hsv(output_light_up_path)
shutil.copy(output_result_image_path,output_path)
time.sleep(1)
try:
os.remove(shadow_up_path)
os.remove(image_light_down_fix_up_path)
os.remove(output_light_up_path)
os.remove(output_result_image_path)
except:
print("删除文件错误")
if __name__ == "__main__":
arg = argparse.ArgumentParser()
arg.add_argument("-i","--image_path", type=str, default="")
args = arg.parse_args()
image_result_dir=os.path.dirname(args.image_path)
os.makedirs(image_result_dir, exist_ok=True)
start_time= time.time()
correct_texture_image(args.image_path,image_result_dir,args.image_path)
end_time = time.time()
total_time = round(end_time - start_time, 2)
print(f"处理成功,耗时 {total_time} 秒,")
"""
1暗部提亮->白色提纯(220)->高光压暗->二次亮度调整
"""
Loading…
Cancel
Save