1 changed files with 157 additions and 0 deletions
@ -0,0 +1,157 @@
@@ -0,0 +1,157 @@
|
||||
import os.path |
||||
import shutil |
||||
import time |
||||
import argparse |
||||
import cv2 |
||||
import numpy as np |
||||
from fix_up_color_two import remove_gray_and_sharpening |
||||
from ps_image_shadow_up_ag import photoshop_actions_emulation |
||||
|
||||
def perceptual_adjustment(img, threshold=220, reduction=0.5): |
||||
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) |
||||
h, s, v = cv2.split(hsv) |
||||
|
||||
saturation_weights = 1 - (s.astype(np.float32) / 255 * 0.01) |
||||
|
||||
adjusted_v = np.where( |
||||
v > threshold, |
||||
threshold + (v - threshold) * (1 - reduction * saturation_weights), |
||||
v |
||||
) |
||||
|
||||
return cv2.cvtColor(cv2.merge([h, s, adjusted_v.astype(np.uint8)]), cv2.COLOR_HSV2BGR) |
||||
|
||||
|
||||
def process_image(input_path, output_path, threshold=210, reduction=0.6): |
||||
""" |
||||
""" |
||||
try: |
||||
img = cv2.imread(input_path) |
||||
if img is None: |
||||
raise ValueError("无法读取图像,请检查路径是否正确") |
||||
|
||||
result = perceptual_adjustment(img, threshold, reduction) |
||||
cv2.imwrite(output_path, result) |
||||
print(f"处理成功,结果已保存到: {output_path}") |
||||
|
||||
return True |
||||
|
||||
except Exception as e: |
||||
print(f"处理失败: {str(e)}") |
||||
return False |
||||
|
||||
def sigmoid(x, center=0.0, slope=10.0): |
||||
return 1 / (1 + np.exp(-slope * (x - center))) |
||||
|
||||
|
||||
def reduce_highlights_lab_advanced_hsvmask(img, highlight_thresh=220, strength=30, sigma=15): |
||||
""" |
||||
""" |
||||
|
||||
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) |
||||
V = hsv[:, :, 2].astype(np.float32) |
||||
|
||||
mask = sigmoid(V, center=highlight_thresh, slope=0.05) |
||||
mask = np.clip(mask, 0, 1) |
||||
mask = cv2.GaussianBlur(mask, (0, 0), sigmaX=2) |
||||
|
||||
mask_vis = (mask * 255).astype(np.uint8) |
||||
|
||||
img_lab = cv2.cvtColor(img, cv2.COLOR_BGR2Lab) |
||||
L, a, b = cv2.split(img_lab) |
||||
L = L.astype(np.float32) |
||||
|
||||
L_blur = cv2.GaussianBlur(L, (0, 0), sigma) |
||||
L_detail = L - L_blur |
||||
|
||||
L_dark = np.clip(L_blur - strength * mask, 0, 255) |
||||
L_new = np.clip(L_dark + L_detail, 0, 255).astype(np.uint8) |
||||
|
||||
lab_new = cv2.merge([L_new, a, b]) |
||||
result = cv2.cvtColor(lab_new, cv2.COLOR_Lab2BGR) |
||||
|
||||
return result, mask_vis |
||||
|
||||
def suppress_highlights_keep_texture(image_bgr, v_thresh=225, target_v=215, sigma=1): |
||||
"""""" |
||||
|
||||
image_hsv = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2HSV) |
||||
h, s, v = cv2.split(image_hsv) |
||||
v = v.astype(np.float32) |
||||
|
||||
v_blur = cv2.GaussianBlur(v, (0, 0), sigmaX=sigma) |
||||
detail = v - v_blur |
||||
|
||||
# 构建 soft mask(0~1),用于动态压制 |
||||
mask = (v_blur > v_thresh).astype(np.float32) |
||||
# weight 越大压得越狠 |
||||
weight = np.clip((v_blur - v_thresh) / 20.0, 0, 1) * mask # 20 是压制带宽 |
||||
#weight =weight*1.2 |
||||
# 将亮度压到 target_v 的线性混合: |
||||
v_compress = v_blur * (1 - weight) + target_v * weight |
||||
|
||||
v_new = v_compress + detail |
||||
v_new = np.clip(v_new, 0, 255).astype(np.uint8) |
||||
|
||||
hsv_new = cv2.merge([h, s, v_new]) |
||||
result_bgr = cv2.cvtColor(hsv_new, cv2.COLOR_HSV2BGR) |
||||
|
||||
return result_bgr |
||||
|
||||
def correct_light_again_hsv(image_path): |
||||
img = cv2.imread(image_path) |
||||
result, mask_vis = reduce_highlights_lab_advanced_hsvmask( |
||||
img, |
||||
highlight_thresh=230, |
||||
strength=7, |
||||
sigma=3 |
||||
) |
||||
result_bgr= suppress_highlights_keep_texture(result) |
||||
output_image_path = image_path.replace(".jpg", "_light02.jpg") |
||||
cv2.imwrite( |
||||
output_image_path, |
||||
result_bgr |
||||
) |
||||
return output_image_path |
||||
|
||||
def correct_texture_image(input_path,image_result_dir,output_path): |
||||
"""""" |
||||
#input_path = os.path.join(image_in_dir, image_name) |
||||
image_name= input_path.split("/")[-1] |
||||
params = { |
||||
'threshold': 220, |
||||
'reduction': 0.6 |
||||
} |
||||
image_cache_dir= os.path.join(image_result_dir,"cache") |
||||
os.makedirs(image_cache_dir, exist_ok=True) |
||||
image_light_down_fix_up_path = remove_gray_and_sharpening(input_path, image_cache_dir) |
||||
output_light_up_path = image_light_down_fix_up_path.replace(".jpg", "_light_down.jpg") |
||||
process_image(image_light_down_fix_up_path, output_light_up_path, **params) |
||||
output_result_image_path=correct_light_again_hsv(output_light_up_path) |
||||
shutil.copy(output_result_image_path,output_path) |
||||
time.sleep(1) |
||||
try: |
||||
os.remove(image_light_down_fix_up_path) |
||||
os.remove(output_light_up_path) |
||||
os.remove(output_result_image_path) |
||||
except: |
||||
print("删除文件错误") |
||||
|
||||
|
||||
|
||||
if __name__ == "__main__": |
||||
arg = argparse.ArgumentParser() |
||||
arg.add_argument("-i","--image_path", type=str, default="") |
||||
args = arg.parse_args() |
||||
image_result_dir=os.path.dirname(args.image_path) |
||||
os.makedirs(image_result_dir, exist_ok=True) |
||||
|
||||
start_time= time.time() |
||||
correct_texture_image(args.image_path,image_result_dir,args.image_path) |
||||
end_time = time.time() |
||||
total_time = round(end_time - start_time, 2) |
||||
print(f"处理成功,耗时 {total_time} 秒,") |
||||
""" |
||||
1、暗部提亮->白色提纯(220)->高光压暗->二次亮度调整 |
||||
""" |
||||
|
||||
Loading…
Reference in new issue