From 6779b08fa8e0f6fd144522c6c10436cac6e32d8d Mon Sep 17 00:00:00 2001 From: dongchangxi <458593490@qq.com> Date: Wed, 25 Jun 2025 16:05:45 +0800 Subject: [PATCH] =?UTF-8?q?v4=20=E7=99=BD=E8=89=B2=E6=8F=90=E7=BA=AF?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- apps/auto_convert3d_new.py | 4 +- apps/fix_up_color_two_a.py | 245 +++++++++++++++ apps/ps_image_shadow_up_ag_two_a.py | 204 ++++++++++++ apps/white_purification_v4.py | 469 ++++++++++++++++++++++++++++ 4 files changed, 920 insertions(+), 2 deletions(-) create mode 100644 apps/fix_up_color_two_a.py create mode 100644 apps/ps_image_shadow_up_ag_two_a.py create mode 100644 apps/white_purification_v4.py diff --git a/apps/auto_convert3d_new.py b/apps/auto_convert3d_new.py index 77987b0..fe450bb 100644 --- a/apps/auto_convert3d_new.py +++ b/apps/auto_convert3d_new.py @@ -3,7 +3,7 @@ import os, oss2, time, redis, requests, shutil, sys, subprocess, json, platform from PIL import Image, ImageDraw, ImageFont from retrying import retry import atexit,platform -import white_purification_v3,white_purification +import white_purification_v4,white_purification if platform.system() == 'Windows': sys.path.append('e:\\libs\\') import common @@ -152,7 +152,7 @@ def team_check(r): imagePath = os.path.join(workdir, 'print', pid,pid+"Tex1.jpg") print("开始处理白色提纯") #white_purification.white_purification_utils(imagePath) - os.system(f'python D:\\make2\\apps\white_purification_v3.py -i {imagePath}') + os.system(f'python D:\\make2\\apps\white_purification_v4.py -i {imagePath}') print("贴图文件白色提纯完成",imagePath) #提纯完重新上传提纯图片 diff --git a/apps/fix_up_color_two_a.py b/apps/fix_up_color_two_a.py new file mode 100644 index 0000000..23f631f --- /dev/null +++ b/apps/fix_up_color_two_a.py @@ -0,0 +1,245 @@ +import cv2, numpy as np, matplotlib.pyplot as plt, os, shutil, argparse, random, time, math +from tqdm import tqdm + +def ps_color_scale_adjustment(image, shadow=0, highlight=255, midtones=1): + ''' + 模拟 PS 的色阶调整; 0 <= Shadow < Highlight <= 255 + :param image: 传入的图片 + :param shadow: 黑场(0-Highlight) + :param highlight: 白场(Shadow-255) + :param midtones: 灰场(9.99-0.01) + :return: 图片 + ''' + if highlight >255: + highlight = 255 + if shadow < 0: + shadow = 0 + if shadow >= highlight: + shadow = highlight - 2 + if midtones > 9.99: + midtones = 9.99 + if midtones < 0.01: + midtones = 0.01 + image = np.array(image, dtype=np.float16) + # 计算白场 黑场离差 + Diff = highlight - shadow + image = image - shadow + image[image < 0] = 0 + image = (image / Diff) ** (1 / midtones) * 255 + image[image > 255] = 255 + image = np.array(image, dtype=np.uint8) + + return image + +# def show_histogram(image, image_id, save_hist_dir, min_threshold, max_threshold): +# ''' +# 画出直方图展示 +# :param image: 导入图片 +# :param image_id: 图片id编号 +# :param save_hist_dir: 保存路径 +# :param min_threshold: 最小阈值 +# :param max_threshold: 最大阈值 +# :return: 原图image,和裁剪原图直方图高低阈值后的图片image_change +# ''' +# plt.rcParams['font.family'] = 'SimHei' +# plt.rcParams['axes.unicode_minus'] = False +# plt.hist(image.ravel(), 254, range=(2, 256), density=False) +# plt.hist(image.ravel(), 96, range=(2, 50), density=False) # 放大 range(0, 50),bins值最好是range的两倍,显得更稀疏,便于对比 +# plt.hist(image.ravel(), 110, range=(200, 255), density=False) # 放大 range(225, 255) +# plt.annotate('thresh1=' + str(min_threshold), # 文本内容 +# xy=(min_threshold, 0), # 箭头指向位置 # 阈值设定值! +# xytext=(min_threshold, 500000), # 文本位置 # 阈值设定值! +# arrowprops=dict(facecolor='black', width=1, shrink=5, headwidth=2)) # 箭头 +# plt.annotate('thresh2=' + str(max_threshold), # 文本内容 +# xy=(max_threshold, 0), # 箭头指向位置 # 阈值设定值! +# xytext=(max_threshold, 500000), # 文本位置 # 阈值设定值! +# arrowprops=dict(facecolor='black', width=1, shrink=5, headwidth=2)) # 箭头 +# # 在y轴上绘制一条直线 +# # plt.axhline(y=10000, color='r', linestyle='--', linewidth=0.5) +# plt.title(str(image_id)) +# # plt.show() +# # 保存直方图 +# save_hist_name = os.path.join(save_hist_dir, f'{image_id}_{min_threshold}&{max_threshold}.jpg') +# plt.savefig(save_hist_name) +# # 清空画布, 防止重叠展示 +# plt.clf() + + +# def low_find_histogram_range(image, target_frequency): +# ''' +# 循环查找在 target_frequency (y)频次限制下的直方图区间值(x) +# :param image: 导入图片 +# :param target_frequency: 直方图 y 频次限制条件 +# :return: 直方图区间 x,和 该区间频次 y +# ''' +# # 计算灰度直方图 +# hist, bins = np.histogram(image, bins=256, range=[0, 256]) +# # 初始化区间和频次 +# interval = 2 +# frequency = hist[255] +# while frequency < target_frequency: +# # 更新区间和频次 +# interval += 1 +# # 检查直方图的频次是否为None,如果频次是None,则将其设为0,这样可以避免将None和int进行比较报错。 +# frequency = hist[interval] if hist[interval] is not None else 0 +# frequency += hist[interval] if hist[interval] is not None else 0 +# # 如果频次接近10000则停止循环 +# if target_frequency - 2000 <= frequency <= target_frequency + 1000: +# break +# +# return interval, frequency + + +# def high_find_histogram_range(image, target_frequency): +# ''' +# 循环查找在 target_frequency (y)频次限制下的直方图区间值(x) +# :param image: 导入图片 +# :param target_frequency: 直方图 y 频次限制条件 +# :return: 直方图区间 x,和 该区间频次 y +# ''' +# # 计算灰度直方图 +# hist, bins = np.histogram(image, bins=256, range=[0, 256]) +# # 初始化区间和频次 +# interval = 255 +# frequency = hist[255] +# while frequency < target_frequency: +# # 更新区间和频次 +# interval -= 1 +# # 检查直方图的频次是否为None,如果频次是None,则将其设为0,这样可以避免将None和int进行比较报错。 +# frequency = hist[interval] if hist[interval] is not None else 0 +# frequency += hist[interval] if hist[interval] is not None else 0 +# # 如果频次接近10000则停止循环 +# if target_frequency - 2000 <= frequency <= target_frequency + 2000: +# break +# +# return interval, frequency + +def find_last_x(image, slope_threshold = 1000): + x = [] + y = [] + hist, bins = np.histogram(image, bins=256, range=[0, 256]) + + #找到50以内的最高峰 + max_y = 0 + max_i = 5 + for i in range(5, 25): + if hist[i] > max_y: + max_y = hist[i] + max_i = i + print(f'50以内最高峰值y:{max_y},最高峰位置x:{max_i}') + + for i in range(2, max_i): + x.append(i) + y.append(hist[i]) + slopes = [abs(y[i + 1] - y[i]) for i in range(len(x) - 1)] + + current_interval = [] + max_interval = [] + max_x = {} + for i, slope in enumerate(slopes): + current_interval.append(slope) + if slope >= slope_threshold: + if len(current_interval) > len(max_interval): + max_interval = current_interval.copy() + max_x[x[i]] = slope + current_interval = [] + if not max_x: + # 尝试降低阈值重新计算 + return find_last_x(image, slope_threshold=slope_threshold // 2) + print(max_x) + + last_x = list(max_x)[-1] + last_y = max_x[last_x] + return last_x, last_y + +def find_last_high(image, slope_threshold = 2500): + x = [] + y = [] + hist, bins = np.histogram(image, bins=255, range=[2, 255]) + + #找到200以上的最高峰 + max_y = 0 + max_i = 254 + for i in range(240, 255): + if hist[i] > max_y: + max_y = hist[i] + max_i = i + print(f'200以上的最高峰值y:{max_y},最高峰位置x:{max_i}') + + for i in range(max_i, 255): + x.append(i) + y.append(hist[i]) + slopes = [abs(y[i + 1] - y[i]) for i in range(len(x) - 1)] + + current_interval = [] + max_interval = [] + max_x = {} + find = False + for i in range(len(slopes) - 1, -1, -1): + slope = slopes[i] + current_interval.append(slope) + if slope >= slope_threshold: + find = True + if len(current_interval) > len(max_interval): + max_interval = current_interval.copy() + max_x[x[i]] = slope + current_interval = [] + #如果没有找到200以上很平,而且高度小于5000,就按240位置削平 + if not find and hist[240] < 5000: + max_x[240] = hist[240] + + + print(max_x) + if len(max_x) > 0: + last_x = list(max_x)[0] + last_y = max_x[last_x] + if last_x < 240: + last_x = 240 + # last_y = max_x[last_x] + else: + print(f'找不到200以上曲线较平的区间,使用254作为最高峰') + last_x = 254 + last_y = hist[254] + return last_x, last_y + +def remove_gray_and_sharpening(jpg_path,save_hist_dir): + input_image = cv2.imread(jpg_path) + filename = os.path.basename(jpg_path) + # low_x_thresh, low_y_frequency = low_find_histogram_range(input_image, low_y_limit) + low_x_thresh, low_y_frequency = find_last_x(input_image) + # high_x_thresh, high_y_frequency = high_find_histogram_range(input_image, high_y_limit) + high_x_thresh, high_y_frequency = find_last_high(input_image) + # print(f"{low_x_thresh} 区间, {low_y_frequency} 频次") + # print(f"{high_x_thresh} 区间, {high_y_frequency} 频次") + output_filename = os.path.join(save_hist_dir, filename).replace('.jpg', f'_{low_x_thresh}_{high_x_thresh}.jpg') + high_output_image = ps_color_scale_adjustment(input_image, shadow=low_x_thresh, highlight=high_x_thresh, midtones=1) + # high_output_image = ps_color_scale_adjustment(low_ouput_image, shadow=0, highlight=high_x_thresh, midtones=1) + + # # 人体贴图和黑色背景交界处不进行锐化 + # gray = cv2.cvtColor(input_image, cv2.COLOR_BGR2GRAY) + # _, thresh = cv2.threshold(gray, 2, 255, cv2.THRESH_BINARY) + # kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (7, 7)) + # gradient = cv2.morphologyEx(thresh, cv2.MORPH_GRADIENT, kernel) + # roi_gradient = cv2.bitwise_and(high_output_image, high_output_image, mask=gradient) + + # # 锐化滤波器 + # # sharpened_image = sharpening_filter(high_output_image) + # sharpened_image = reduce_sharpness(high_output_image, factor=4) + # # 将原图边界替换锐化后的图片边界 + # sharpened_image[gradient != 0] = roi_gradient[gradient != 0] + + # 直方图标记并保存 + # show_histogram(input_image, img_id, low_x_thresh, high_x_thresh) + # cv2.imwrite(jpg_path, high_output_image, [cv2.IMWRITE_JPEG_QUALITY, 95]) # 保存图片的质量是原图的 95% + cv2.imwrite(output_filename, high_output_image, [cv2.IMWRITE_JPEG_QUALITY, 95]) # 保存图片的质量是原图的 95% + return output_filename + +if __name__ == '__main__': + arg = argparse.ArgumentParser() + arg.add_argument('--jpg_dir', type=str, default='/data/datasets_20t/fsdownload/image_color_timing/input') + arg.add_argument('--save_hist_dir', type=str, default='/data/datasets_20t/fsdownload/image_color_timing/output') + args = arg.parse_args() + + for img_id in tqdm(os.listdir(args.jpg_dir)): + jpg_path = os.path.join(args.jpg_dir, img_id) + remove_gray_and_sharpening(jpg_path,args.save_hist_dir) \ No newline at end of file diff --git a/apps/ps_image_shadow_up_ag_two_a.py b/apps/ps_image_shadow_up_ag_two_a.py new file mode 100644 index 0000000..36c12c6 --- /dev/null +++ b/apps/ps_image_shadow_up_ag_two_a.py @@ -0,0 +1,204 @@ +import os.path +import numpy as np +import cv2 +import argparse +import matplotlib.pyplot as plt + +def adjust_levels_image(img): + """""" + img = img.astype(np.float32) + img = 255 * ((img - 20) / (241 - 20)) + img[img < 0] = 0 + img[img > 255] = 255 + img = 255 * np.power(img / 255.0, 1.0 / 1.34) + img = (img / 255) * (255- 0) + 0 + img[img < 0] = 0 + img[img > 255] = 255 + img = img.astype(np.uint8) + return img + + +def photoshop_style_feather(image, mask, radius=150): + """ + """ + if mask.dtype != np.uint8: + mask = (mask * 255).astype(np.uint8) + if len(mask.shape) > 2: + mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY) + kernel_size = max(3, int(2 * np.ceil(2 * radius) + 1)) + expanded_size = (mask.shape[0] + 2 * radius, mask.shape[1] + 2 * radius) + expanded_mask = np.zeros(expanded_size, dtype=np.uint8) + center_y, center_x = radius, radius + expanded_mask[center_y:center_y + mask.shape[0], + center_x:center_x + mask.shape[1]] = mask + + blurred_expanded_mask = cv2.GaussianBlur( + expanded_mask, + (kernel_size, kernel_size), + sigmaX=radius, + sigmaY=radius, + borderType=cv2.BORDER_REFLECT_101 + ) + + feathered_mask = blurred_expanded_mask[center_y:center_y + mask.shape[0], + center_x:center_x + mask.shape[1]] + + feathered_mask = feathered_mask.astype(np.float32) / 255.0 + feathered_mask = np.power(feathered_mask, 1.1) # 轻微增强对比度 + feathered_mask = np.clip(feathered_mask * 255, 0, 255).astype(np.uint8) + + return feathered_mask + +def calculate_luminance(img): + """""" + if len(img.shape) == 3: + ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb) + return ycrcb[:, :, 0].astype(np.float32) / 255.0 + else: + return img.astype(np.float32) / 255.0 + + +def photoshop_feather_blend(adjusted_img, original_img, mask, feather_radius=150, brightness_factor=0.95): + """ + """ + if mask.dtype != np.uint8: + mask = (mask * 255).astype(np.uint8) + if len(mask.shape) > 2: + mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY) + # plt.figure(figsize=(10, 8)) + # plt.imshow(mask, cmap='gray') + # plt.title("Feathered Mask") + # plt.axis('off') + # plt.colorbar(label='Opacity') + # plt.show() + + feathered_mask = photoshop_style_feather(original_img, mask, feather_radius) + # plt.figure(figsize=(10, 8)) + # plt.imshow(feathered_mask, cmap='gray') + # plt.title("Feathered Mask") + # plt.axis('off') + # plt.colorbar(label='Opacity') + # plt.show() + feathered_mask_float = feathered_mask.astype(np.float32) / 255.0 + + if len(original_img.shape) == 3 and len(feathered_mask_float.shape) == 2: + feathered_mask_float = np.stack([feathered_mask_float] * 3, axis=-1) + + def to_linear(img): + img_linear = img.astype(np.float32) / 255.0 + return np.where(img_linear <= 0.04045, + img_linear / 12.92, + ((img_linear + 0.055) / 1.055) ** 2.4) + + def to_srgb(img_linear): + return np.where(img_linear <= 0.0031308, + img_linear * 12.92, + 1.055 * (img_linear ** (1 / 2.4)) - 0.055) + + adjusted_linear = to_linear(adjusted_img) + original_linear = to_linear(original_img) + + luminance_adjustment = np.mean(original_linear, axis=-1, keepdims=True) * (1.0 - brightness_factor) + adjusted_linear_corrected = adjusted_linear - luminance_adjustment + + blended_linear = (adjusted_linear_corrected * feathered_mask_float + + original_linear * (1 - feathered_mask_float)) + + blended_srgb = to_srgb(blended_linear) + blended_img = np.clip(blended_srgb * 255, 0, 255).astype(np.uint8) + + return blended_img + + +def rgb2lab_image(rgb_img): + """""" + rgb = rgb_img.astype(np.float32) / 255.0 + + mask = rgb > 0.04045 + rgb = np.where(mask, + np.power((rgb + 0.055) / 1.055, 2.4), + rgb / 12.92) + + XYZ = np.dot(rgb, [ + [0.436052025, 0.222491598, 0.013929122], + [0.385081593, 0.716886060, 0.097097002], + [0.143087414, 0.060621486, 0.714185470] + ]) + + XYZ *= np.array([100.0, 100.0, 100.0]) / [96.4221, 100.0, 82.5211] + + epsilon = 0.008856 + kappa = 903.3 + + XYZ_norm = np.where(XYZ > epsilon, + np.power(XYZ, 1 / 3), + (kappa * XYZ + 16) / 116) + + L = 116 * XYZ_norm[..., 1] - 16 + a = 500 * (XYZ_norm[..., 0] - XYZ_norm[..., 1]) + b = 200 * (XYZ_norm[..., 1] - XYZ_norm[..., 2]) + + return np.stack([L, a, b], axis=-1) + + +def photoshop_lab_color_range_optimized(bgr_img, target_lab, tolerance=59, anti_alias=True): + """""" + + rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB) + lab_img = rgb2lab_image(rgb_img) + + L, a, b = lab_img[:, :, 0], lab_img[:, :, 1], lab_img[:, :, 2] + target_L, target_a, target_b = target_lab + + diff_L = np.abs(L - target_L) + diff_a = np.abs(a - target_a) + diff_b = np.abs(b - target_b) + + dark_boost = np.ones_like(L) + dark_mask = L <40 + dark_boost[dark_mask] = 1.2 + + weighted_diff = np.sqrt( + 0.25 * (diff_L / 100) ** 2 + + 0.75 * ((diff_a + diff_b) / 255) ** 2 + ) * 100 + + weighted_diff = weighted_diff / dark_boost + + threshold = 1.6 * (100 - tolerance) / 100 * 23 + + normalized_diff = weighted_diff / threshold + mask = 0.5 * (np.tanh(4 * (1 - normalized_diff)) + 1) + + if anti_alias: + mask = cv2.GaussianBlur(mask, (5, 5), 0) + + return mask + +def photoshop_actions_emulation(input_path, output_path): + """""" + original_img = cv2.imread(input_path) + target_lab = np.array([47.89, 20.31, 20.6], dtype=np.float32) + tol= 81 + mask = photoshop_lab_color_range_optimized(original_img, target_lab, tol) + mask_uint8 = (mask * 255).astype(np.uint8) + adjusted_img = adjust_levels_image(original_img) + result = photoshop_feather_blend(adjusted_img, original_img, mask_uint8, + feather_radius=15, brightness_factor=0.95) + cv2.imwrite(output_path, result) + + + +if __name__ == '__main__': + arg = argparse.ArgumentParser() + arg.add_argument('--image_name', type=str, default='274351Tex1_adjusted060518_2_221.jpg') + arg.add_argument('--image_name_new', type=str, default='274351Tex1_adjusted060518_2_221_999999.jpg') + arg.add_argument('--in_dir', type=str, default='/data/datasets_20t/fsdownload/image_color_timing/output/') + arg.add_argument('--out_dir', type=str, default='/data/datasets_20t/fsdownload/image_color_timing/shadow_up/') + args = arg.parse_args() + os.makedirs(args.out_dir,exist_ok=True) + input_path = os.path.join(args.in_dir,args.image_name) + output_path = os.path.join(args.out_dir,args.image_name_new) + photoshop_actions_emulation(input_path, output_path) + + diff --git a/apps/white_purification_v4.py b/apps/white_purification_v4.py new file mode 100644 index 0000000..aa46bc6 --- /dev/null +++ b/apps/white_purification_v4.py @@ -0,0 +1,469 @@ +import os.path +import shutil +import time +import argparse +import cv2 +import numpy as np +from scipy.interpolate import CubicSpline +import sys, os +sys.path.append(os.path.dirname(os.path.abspath(__file__))) +from fix_up_color_two_a import remove_gray_and_sharpening +from ps_image_shadow_up_ag_two_a import photoshop_actions_emulation + + +# def perceptual_adjustment(img, threshold=220, reduction=0.5): +# hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) +# h, s, v = cv2.split(hsv) +# +# saturation_weights = 1 - (s.astype(np.float32) / 255 * 0.01) +# +# adjusted_v = np.where( +# v > threshold, +# threshold + (v - threshold) * (1 - reduction * saturation_weights), +# v +# ) +# +# return cv2.cvtColor(cv2.merge([h, s, adjusted_v.astype(np.uint8)]), cv2.COLOR_HSV2BGR) + + +# def perceptual_smooth_adjustment(img, threshold=220, reduction=0.5,margin=5, saturation_sensitivity=0.3): +# """ +# 感知式亮度压制 + 过渡区平滑(防止硬边) +# +# 参数: +# - threshold: 高光压制起点 +# - margin: 过渡带宽度(像素值差) +# - reduction: 压制比例(1 表示最多降低100%) +# - saturation_sensitivity: 饱和度影响权重 +# """ +# hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) +# h, s, v = cv2.split(hsv) +# +# v = v.astype(np.float32) +# s = s.astype(np.float32) +# +# # 1. 饱和度感知权重(饱和度越高,压制越弱) +# sat_weight = 1.0 - (s / 255.0 * saturation_sensitivity) +# sat_weight = np.clip(sat_weight, 0.0, 1.0) +# +# # 2. 构建平滑过渡权重(根据 V 值) +# transition_mask = np.zeros_like(v, dtype=np.float32) +# transition_mask[v <= threshold] = 0.0 +# transition_mask[v >= threshold + margin] = 1.0 +# +# # 线性过渡区域 +# in_between = (v > threshold) & (v < threshold + margin) +# transition_mask[in_between] = (v[in_between] - threshold) / margin +# +# # 3. 计算最终压制权重(融合过渡 + 饱和度感知) +# weight = reduction * transition_mask * sat_weight +# +# # 4. 应用压制 +# v_adjusted = v - (v - threshold) * weight +# v_adjusted = np.clip(v_adjusted, 0, 255).astype(np.uint8) +# +# # 5. 合成并返回 +# adjusted_hsv = cv2.merge([h, s.astype(np.uint8), v_adjusted]) +# result_bgr = cv2.cvtColor(adjusted_hsv, cv2.COLOR_HSV2BGR) +# +# return result_bgr + +def smootherstep(x): + """五次平滑插值函数:更加平滑过渡""" + return x**3 * (x * (x * 6 - 15) + 10) + + +def perceptual_smooth_adjustment_color_blend(img, threshold=220, reduction=0.5, margin=10, saturation_sensitivity=0.3, blur_radius=5, color_blend_strength=0.5): + """ + 更平滑、颜色融合感知亮度压制 + + - threshold: 压制起始亮度(V 通道) + - reduction: 压制强度(0-1) + - margin: 阈值过渡区间(像素亮度差) + - saturation_sensitivity: 饱和度高时减弱压制 + - blur_radius: 用于颜色融合的模糊半径 + - color_blend_strength: 颜色融合程度(0~1) + """ + hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) + h, s, v = cv2.split(hsv) + + v = v.astype(np.float32) + s = s.astype(np.float32) + + # 饱和度感知压制减弱 + sat_weight = 1.0 - (s / 255.0 * saturation_sensitivity) + sat_weight = np.clip(sat_weight, 0.0, 1.0) + + # 平滑压制权重计算 + delta = v - threshold + transition = np.zeros_like(v, dtype=np.float32) + + in_range = (delta > 0) & (delta < margin) + transition[in_range] = smootherstep(delta[in_range] / margin) + transition[delta >= margin] = 1.0 + + # 压制权重融合 + weight = reduction * transition * sat_weight + + # 应用压制 + v_new = v - (v - threshold) * weight + v_new = np.clip(v_new, 0, 255).astype(np.uint8) + + # 合成压制后的图像 + adjusted_hsv = cv2.merge([h, s.astype(np.uint8), v_new]) + adjusted = cv2.cvtColor(adjusted_hsv, cv2.COLOR_HSV2BGR) + + # ------------------- + # 融合原图模糊版 → 减少颜色突兀 + # ------------------- + blurred = cv2.GaussianBlur(img, (blur_radius | 1, blur_radius | 1), 0) + + # 构建融合权重 mask,仅对过渡区域起作用 + color_blend_mask = np.clip(weight, 0, 1) * color_blend_strength + color_blend_mask = color_blend_mask[..., None] # 扩展为 (H,W,1) 用于通道融合 + + # 融合颜色(让压制后的颜色更靠近周围环境) + final = adjusted.astype(np.float32) * (1 - color_blend_mask) + blurred.astype(np.float32) * color_blend_mask + final = np.clip(final, 0, 255).astype(np.uint8) + + return final + +# def perceptual_smooth_adjustment(img, threshold=220, reduction=0.5, margin=10, saturation_sensitivity=0.3, blur_radius=3): +# """ +# 感知式亮度压制 + 平滑过渡 + 边缘柔化 +# +# 参数: +# - threshold: 开始压制的亮度阈值 +# - reduction: 最大压制比例(1 表示压到底) +# - margin: 过渡宽度(单位是亮度值差) +# - saturation_sensitivity: 饱和度越高,压制越弱 +# - blur_radius: 最终压制结果边缘模糊程度(建议 3) +# """ +# # 转 HSV 获取亮度与饱和度 +# hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) +# h, s, v = cv2.split(hsv) +# +# v = v.astype(np.float32) +# s = s.astype(np.float32) +# +# # 1. 饱和度影响(越高压制越少) +# sat_weight = 1.0 - (s / 255.0 * saturation_sensitivity) +# sat_weight = np.clip(sat_weight, 0.0, 1.0) +# +# # 2. 构造更平滑的过渡权重(使用 smootherstep) +# delta = v - threshold +# transition = np.zeros_like(v, dtype=np.float32) +# +# in_range = (delta > 0) & (delta < margin) +# transition[in_range] = smootherstep(delta[in_range] / margin) +# transition[delta >= margin] = 1.0 # 完全压制区域 +# +# # 3. 亮度压制权重 +# weight = reduction * transition * sat_weight +# +# # 4. 应用压制 +# v_new = v - (v - threshold) * weight +# v_new = np.clip(v_new, 0, 255).astype(np.uint8) +# +# # 5. 合并回 HSV 并转回 BGR +# adjusted_hsv = cv2.merge([h, s.astype(np.uint8), v_new]) +# result = cv2.cvtColor(adjusted_hsv, cv2.COLOR_HSV2BGR) +# +# # 6. 进一步边缘模糊(仅作用于过渡区域) +# blur_mask = (transition > 0.0) & (transition < 1.0) +# blur_mask = blur_mask.astype(np.uint8) * 255 +# blur_mask = cv2.GaussianBlur(blur_mask, (blur_radius|1, blur_radius|1), 0) +# +# # 创建模糊版本 +# blurred = cv2.GaussianBlur(result, (blur_radius|1, blur_radius|1), 0) +# +# # 混合:边缘模糊区域取模糊图,其他保持原图 +# blur_mask = blur_mask.astype(np.float32) / 255.0 +# result = result.astype(np.float32) +# blurred = blurred.astype(np.float32) +# +# final = result * (1 - blur_mask[..., None]) + blurred * blur_mask[..., None] +# final = np.clip(final, 0, 255).astype(np.uint8) +# +# return final + +def process_image(input_path, output_path, threshold=210, reduction=0.6): + """ + """ + try: + img = cv2.imread(input_path) + if img is None: + raise ValueError("无法读取图像,请检查路径是否正确") + + #result = perceptual_adjustment(img, threshold, reduction) + result = perceptual_smooth_adjustment_color_blend(img, threshold, reduction) + + cv2.imwrite(output_path, result) + print(f"处理成功,结果已保存到: {output_path}") + + return True + + except Exception as e: + print(f"处理失败: {str(e)}") + return False + +def sigmoid(x, center=0.0, slope=10.0): + return 1 / (1 + np.exp(-slope * (x - center))) + + +def reduce_highlights_lab_advanced_hsvmask( + img, + highlight_thresh=220, + strength=30, + sigma=15, + detail_boost=1.0, + preserve_local_contrast=True +): + """ + LAB高光压制 + HSV感知蒙版 + 细节保留 + """ + hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) + V = hsv[:, :, 2].astype(np.float32) + + # 1. 生成高光 mask,过渡平滑 + mask = sigmoid(V, center=highlight_thresh, slope=0.05) + mask = np.clip(mask, 0, 1) + mask = cv2.GaussianBlur(mask, (0, 0), sigmaX=2) + + mask_vis = (mask * 255).astype(np.uint8) + + # 2. LAB 空间亮度压制 + img_lab = cv2.cvtColor(img, cv2.COLOR_BGR2Lab) + L, a, b = cv2.split(img_lab) + L = L.astype(np.float32) + + # 3. 模糊和细节 + L_blur = cv2.GaussianBlur(L, (0, 0), sigma) + L_detail = L - L_blur + + # 4. 替代方案:压制 L,但融合方式更柔和 + L_target = L_blur - strength * mask + L_target = np.clip(L_target, 0, 255) + + if preserve_local_contrast: + # 保留细节 + 局部对比度(避免过度平滑) + L_new = L_target + detail_boost * L_detail + else: + # 单纯压制亮度 + L_new = L_target + + L_new = np.clip(L_new, 0, 255).astype(np.uint8) + + # 5. 合成回去 + lab_new = cv2.merge([L_new, a, b]) + result = cv2.cvtColor(lab_new, cv2.COLOR_Lab2BGR) + + return result, mask_vis + +def suppress_highlights_keep_texture(image_bgr, v_thresh=225, target_v=215, sigma=1): + """""" + + image_hsv = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2HSV) + h, s, v = cv2.split(image_hsv) + v = v.astype(np.float32) + + v_blur = cv2.GaussianBlur(v, (0, 0), sigmaX=sigma) + detail = v - v_blur + + # 构建 soft mask(0~1),用于动态压制 + mask = (v_blur > v_thresh).astype(np.float32) + # weight 越大压得越狠 + weight = np.clip((v_blur - v_thresh) / 20.0, 0, 1) * mask # 20 是压制带宽 + #weight =weight*1.2 + # 将亮度压到 target_v 的线性混合: + v_compress = v_blur * (1 - weight) + target_v * weight + + v_new = v_compress + detail + v_new = np.clip(v_new, 0, 255).astype(np.uint8) + + hsv_new = cv2.merge([h, s, v_new]) + result_bgr = cv2.cvtColor(hsv_new, cv2.COLOR_HSV2BGR) + + return result_bgr + +def correct_light_again_hsv(image_path): + img = cv2.imread(image_path) + result, mask_vis = reduce_highlights_lab_advanced_hsvmask( + img, + highlight_thresh=225, + strength=15, + sigma=10, + detail_boost=1.2 + ) + result_bgr= suppress_highlights_keep_texture(result) + output_image_path = image_path.replace(".jpg", "_light02.jpg") + cv2.imwrite( + output_image_path, + result_bgr + ) + return output_image_path + +def generate_curve_lut(x_points, y_points): + """ + 输入采样点,生成 256 长度的查找表(LUT) + """ + cs = CubicSpline(x_points, y_points, bc_type='natural') + x = np.arange(256) + y = cs(x) + y = np.clip(y, 0, 255).astype(np.uint8) + return y + +def apply_curve(img, lut): + """ + 对图像的每个通道应用曲线 LUT(复合通道) + """ + result = cv2.LUT(img, lut) + return result + + +def apply_curve_up_image(image_path,image_cache_dir): + """提亮""" + x_points = [0, 124, 255] + y_points = [0, 131, 255] + lut = generate_curve_lut(x_points, y_points) + #adjusted = apply_curve(img, lut) + + image_name_result = image_path.split("/")[-1].replace(".jpg", "_up.jpg") + result_path= os.path.join(image_cache_dir,image_name_result) + count=0 + while True: + # image_path="/data/datasets_20t/Downloads_google/correct_show_obj/265340/265340Tex1.jpg" + # result_path = "/data/datasets_20t/Downloads_google/correct_show_obj/265340/265340Tex1_new.jpg" + + if os.path.exists(result_path): + image_bgr = cv2.imread(result_path) + else: + image_bgr = cv2.imread(image_path) + + image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB) + image_hsv = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2HSV).astype(np.float32) + h, s, v = cv2.split(image_hsv) + h_mean = np.mean(h) + s_mean = np.mean(s) + v_mean = np.mean(v) + print(f"v_mean{v_mean}") + if v_mean<60: + adjusted = apply_curve(image_bgr, lut) + cv2.imwrite(result_path, adjusted) + time.sleep(1) + count=count+1 + else: + break + if count>=1: + cv2.imwrite(result_path, adjusted) + time.sleep(1) + break + if os.path.exists(result_path): + return result_path + else: + return None + +def apply_curve_down_image(image_path,image_cache_dir): + """压暗""" + x_points = [0, 131, 255] + y_points = [0, 124, 255] + lut = generate_curve_lut(x_points, y_points) + # adjusted = apply_curve(img, lut) + image_name_result = image_path.split("/")[-1].replace(".jpg", "_down.jpg") + result_path= os.path.join(image_cache_dir,image_name_result) + count = 0 + while True: + # image_path="/data/datasets_20t/Downloads_google/correct_show_obj/265340/265340Tex1.jpg" + # result_path = "/data/datasets_20t/Downloads_google/correct_show_obj/265340/265340Tex1_new.jpg" + + if os.path.exists(result_path): + image_bgr = cv2.imread(result_path) + else: + image_bgr = cv2.imread(image_path) + + image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB) + image_hsv = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2HSV).astype(np.float32) + h, s, v = cv2.split(image_hsv) + h_mean = np.mean(h) + s_mean = np.mean(s) + v_mean = np.mean(v) + print(f"v_mean{v_mean}") + if v_mean > 110: + adjusted = apply_curve(image_bgr, lut) + cv2.imwrite(result_path, adjusted) + time.sleep(1) + count=count+1 + else: + break + + if count >= 1: + cv2.imwrite(result_path, adjusted) + time.sleep(1) + break + if os.path.exists(result_path): + return result_path + else: + return None + + +def correct_texture_image(input_path,image_result_dir,output_path): + """""" + #input_path = os.path.join(image_in_dir, image_name) + + params = { + 'threshold': 220, + 'reduction': 0.6 + } + image_cache_dir= os.path.join(image_result_dir,"cache") + os.makedirs(image_cache_dir, exist_ok=True) + + + input_path_cure_up = apply_curve_up_image(input_path,image_cache_dir) + if input_path_cure_up: + input_path_cure_down = input_path_cure_up + else: + input_path_cure_down = input_path + + input_path_cure_down_result = apply_curve_down_image(input_path_cure_down,image_cache_dir) + if input_path_cure_down_result: + input_path_correct = input_path_cure_down_result + else: + input_path_correct = input_path_cure_down + + print("input_path_correct", input_path_correct) + #image_name = input_path_correct.split("/")[-1] + #out_put_path = os.path.join(image_cache_dir, image_name) + image_light_down_fix_up_path = remove_gray_and_sharpening(input_path_correct, image_cache_dir) + + shadow_up_path = image_light_down_fix_up_path.replace(".jpg", "_shadow_up.jpg") + photoshop_actions_emulation(image_light_down_fix_up_path, shadow_up_path) + + output_light_up_path = shadow_up_path.replace(".jpg", "_light_down.jpg") + process_image(shadow_up_path, output_light_up_path, **params) + #output_result_image_path=correct_light_again_hsv(output_light_up_path) + shutil.copy(output_light_up_path,output_path) + time.sleep(1) + try: + shutil.rmtree(image_cache_dir) + except: + print("删除文件错误") + + return output_light_up_path + + + +if __name__ == "__main__": + arg = argparse.ArgumentParser() + arg.add_argument("-i","--image_path", type=str, default="") + args = arg.parse_args() + image_result_dir=os.path.dirname(args.image_path) + os.makedirs(image_result_dir, exist_ok=True) + + start_time= time.time() + correct_texture_image(args.image_path,image_result_dir,args.image_path) + end_time = time.time() + total_time = round(end_time - start_time, 2) + print(f"处理成功,耗时 {total_time} 秒,") + """ + 1、暗部提亮->白色提纯(220)->高光压暗->二次亮度调整 + """