from PIL import Image, ImageEnhance import cv2, numpy, sys, os #adjust color temperature to 6000K def adjust_color_temp(image, color_temp): kelvin_table = { 1000: (255, 56, 0), 1100: (255, 71, 0), 1200: (255, 83, 0), 1300: (255, 93, 0), 1400: (255, 101, 0), 1500: (255, 109, 0), 1600: (255, 115, 0), 1700: (255, 121, 0), 1800: (255, 126, 0), 1900: (255, 131, 0), 2000: (255, 138, 18), 2100: (255, 142, 33), 2200: (255, 147, 44), 2300: (255, 152, 54), 2400: (255, 157, 63), 2500: (255, 161, 72), 2600: (255, 165, 79), 2700: (255, 169, 87), 2800: (255, 173, 94), 2900: (255, 177, 101), 3000: (255, 180, 107), 3100: (255, 184, 114), 3200: (255, 187, 120), 3300: (255, 190, 126), 3400: (255, 193, 132), 3500: (255, 196, 137), 3600: (255, 199, 143), 3700: (255, 201, 148), 3800: (255, 204, 153), 3900: (255, 206, 159), 4000: (255, 209, 163), 4100: (255, 211, 168), 4200: (255, 213, 173), 4300: (255, 215, 177), 4400: (255, 217, 182), 4500: (255, 219, 186), 4600: (255, 221, 190), 4700: (255, 223, 194), 4800: (255, 225, 198), 4900: (255, 227, 202), 5000: (255, 228, 206), 5100: (255, 230, 210), 5200: (255, 232, 213), 5300: (255, 233, 217), 5400: (255, 235, 220), 5500: (255, 236, 224), 5600: (255, 238, 227), 5700: (255, 239, 230), 5800: (255, 240, 233), 5900: (255, 242, 236), 6000: (255, 243, 239), 6100: (255, 244, 242), 6200: (255, 245, 245), 6300: (255, 246, 247), 6400: (255, 248, 251), 6500: (255, 249, 253), 6600: (254, 249, 255), 6700: (252, 247, 255), 6800: (249, 246, 255), 6900: (247, 245, 255), 7000: (245, 243, 255), 7100: (243, 242, 255), 7200: (240, 241, 255), 7300: (239, 240, 255), 7400: (237, 239, 255), 7500: (235, 238, 255), 7600: (233, 237, 255), 7700: (231, 236, 255), 7800: (230, 235, 255), 7900: (228, 234, 255), 8000: (227, 233, 255), 8100: (225, 232, 255), 8200: (224, 231, 255), 8300: (222, 230, 255), 8400: (221, 230, 255), 8500: (220, 229, 255), 8600: (218, 229, 255), 8700: (217, 227, 255), 8800: (216, 227, 255), 8900: (215, 226, 255), 9000: (214, 225, 255), 9100: (212, 225, 255), 9200: (211, 224, 255), 9300: (210, 223, 255), 9400: (209, 223, 255), 9500: (208, 222, 255), 9600: (207, 221, 255), 9700: (207, 221, 255), 9800: (206, 220, 255), 9900: (205, 220, 255), 10000: (207, 218, 255), 10100: (207, 218, 255), 10200: (206, 217, 255), 10300: (205, 217, 255), 10400: (204, 216, 255), 10500: (204, 216, 255), 10600: (203, 215, 255), 10700: (202, 215, 255), 10800: (202, 214, 255), 10900: (201, 214, 255), 11000: (200, 213, 255), 11100: (200, 213, 255), 11200: (199, 212, 255), 11300: (198, 212, 255), 11400: (198, 212, 255), 11500: (197, 211, 255), 11600: (197, 211, 255), 11700: (197, 210, 255), 11800: (196, 210, 255), 11900: (195, 210, 255), 12000: (195, 209, 255)} r, g, b = kelvin_table[color_temp] matrix = ( r / 255.0, 0.0, 0.0, 0.0, 0.0, g / 255.0, 0.0, 0.0, 0.0, 0.0, b / 255.0, 0.0 ) return image.convert('RGB', matrix) # filename = '/home/water/Downloads/114_8.jpg' # with Image.open(filename) as img: # img = img.rotate(180) # img_array = numpy.array(img) # img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR) # img_array[:, :, 2] = img_array[:, :, 2] *0.92 # img_array = cv2.cvtColor(img_array, cv2.COLOR_BGR2RGB) # img = Image.fromarray(img_array) # img.save('/home/water/Downloads/114_8_去红.jpg') # # img = adjust_color_temp(img, 6000) # # img.save('/home/water/Downloads/114_8_去红_调色温.jpg') # # enh = ImageEnhance.Brightness(img) # # img = enh.enhance(0.9) # # img.save('/home/water/Downloads/114_8_去红_调色温_亮度.jpg') # # enh = ImageEnhance.Contrast(img) # # img = enh.enhance(1.1) # # img.save('/home/water/Downloads/114_8_去红_调色温_亮度_对比度.jpg') # # enh = ImageEnhance.Color(img) # # img = enh.enhance(1.1) # # img.save('/home/water/Downloads/114_8_去红_调色温_亮度_对比度_色彩平衡.jpg') def decrease_red(img, threshold=0.94): img_array = numpy.array(img) img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR) img_array[:, :, 2] = img_array[:, :, 2] * threshold img_array = cv2.cvtColor(img_array, cv2.COLOR_BGR2RGB) img = Image.fromarray(img_array) return img def adjust_hsv(img, h=6): img_array = numpy.array(img) img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2HSV) img_array[:, :, 0] = img_array[:, :, 0] + h img_array = cv2.cvtColor(img_array, cv2.COLOR_HSV2RGB) img = Image.fromarray(img_array) return img # 用lab模式调整图像, a通道的中心点的值从1.0偏移到0.89,可以更完美的解决偏红问题,这块应该是更优的图片偏色调整方案,属于“真·无损调整”。 def adjust_lab(img, a=0.89): img_array = numpy.array(img) img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2LAB) img_array[:, :, 1] = img_array[:, :, 1] * a img_array = cv2.cvtColor(img_array, cv2.COLOR_LAB2RGB) img = Image.fromarray(img_array) return img if __name__ == '__main__': if len(sys.argv) == 1: path = '.' elif len(sys.argv) == 2: path = sys.argv[1] path = os.path.abspath(path) for filename in os.listdir(path): if filename.endswith('调色优化.jpg'): continue img = Image.open(os.path.join(path, filename)) img = img.rotate(180) # img = decrease_red(img) img = adjust_hsv(img) # img = adjust_lab(img) img.save(os.path.join(path, filename.replace('.jpg', '_调色优化.jpg')))