建模程序 多个定时程序
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

163 lines
5.0 KiB

import os.path
import shutil
import time
import argparse
import cv2
import numpy as np
from fix_up_color_two import remove_gray_and_sharpening
from ps_image_shadow_up_ag import photoshop_actions_emulation
def perceptual_adjustment(img, threshold=220, reduction=0.5):
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)
saturation_weights = 1 - (s.astype(np.float32) / 255 * 0.01)
adjusted_v = np.where(
v > threshold,
threshold + (v - threshold) * (1 - reduction * saturation_weights),
v
)
return cv2.cvtColor(cv2.merge([h, s, adjusted_v.astype(np.uint8)]), cv2.COLOR_HSV2BGR)
def process_image(input_path, output_path, threshold=210, reduction=0.6):
"""
"""
try:
img = cv2.imread(input_path)
if img is None:
raise ValueError("无法读取图像,请检查路径是否正确")
result = perceptual_adjustment(img, threshold, reduction)
cv2.imwrite(output_path, result)
print(f"处理成功,结果已保存到: {output_path}")
return True
except Exception as e:
print(f"处理失败: {str(e)}")
return False
def sigmoid(x, center=0.0, slope=10.0):
return 1 / (1 + np.exp(-slope * (x - center)))
def reduce_highlights_lab_advanced_hsvmask(img, highlight_thresh=220, strength=30, sigma=15):
"""
"""
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
V = hsv[:, :, 2].astype(np.float32)
mask = sigmoid(V, center=highlight_thresh, slope=0.05)
mask = np.clip(mask, 0, 1)
mask = cv2.GaussianBlur(mask, (0, 0), sigmaX=2)
mask_vis = (mask * 255).astype(np.uint8)
img_lab = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)
L, a, b = cv2.split(img_lab)
L = L.astype(np.float32)
L_blur = cv2.GaussianBlur(L, (0, 0), sigma)
L_detail = L - L_blur
L_dark = np.clip(L_blur - strength * mask, 0, 255)
L_new = np.clip(L_dark + L_detail, 0, 255).astype(np.uint8)
lab_new = cv2.merge([L_new, a, b])
result = cv2.cvtColor(lab_new, cv2.COLOR_Lab2BGR)
return result, mask_vis
def suppress_highlights_keep_texture(image_bgr, v_thresh=225, target_v=215, sigma=1):
""""""
image_hsv = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(image_hsv)
v = v.astype(np.float32)
v_blur = cv2.GaussianBlur(v, (0, 0), sigmaX=sigma)
detail = v - v_blur
# 构建 soft mask(0~1),用于动态压制
mask = (v_blur > v_thresh).astype(np.float32)
# weight 越大压得越狠
weight = np.clip((v_blur - v_thresh) / 20.0, 0, 1) * mask # 20 是压制带宽
#weight =weight*1.2
# 将亮度压到 target_v 的线性混合:
v_compress = v_blur * (1 - weight) + target_v * weight
v_new = v_compress + detail
v_new = np.clip(v_new, 0, 255).astype(np.uint8)
hsv_new = cv2.merge([h, s, v_new])
result_bgr = cv2.cvtColor(hsv_new, cv2.COLOR_HSV2BGR)
return result_bgr
def correct_light_again_hsv(image_path):
img = cv2.imread(image_path)
result, mask_vis = reduce_highlights_lab_advanced_hsvmask(
img,
highlight_thresh=230,
strength=7,
sigma=3
)
result_bgr= suppress_highlights_keep_texture(result)
output_image_path = image_path.replace(".jpg", "_light02.jpg")
cv2.imwrite(
output_image_path,
result_bgr
)
return output_image_path
def correct_texture_image(input_path,image_result_dir,output_path):
""""""
#input_path = os.path.join(image_in_dir, image_name)
image_name= input_path.split("/")[-1]
params = {
'threshold': 220,
'reduction': 0.6
}
image_cache_dir= os.path.join(image_result_dir,"cache")
os.makedirs(image_cache_dir, exist_ok=True)
out_put_path = os.path.join(image_cache_dir, image_name)
shadow_up_path = out_put_path.replace(".jpg", "_shadow_up.jpg")
photoshop_actions_emulation(input_path, shadow_up_path)
image_light_down_fix_up_path = remove_gray_and_sharpening(shadow_up_path, image_cache_dir)
output_light_up_path = image_light_down_fix_up_path.replace(".jpg", "_light_down.jpg")
process_image(image_light_down_fix_up_path, output_light_up_path, **params)
output_result_image_path=correct_light_again_hsv(output_light_up_path)
shutil.copy(output_result_image_path,output_path)
time.sleep(1)
try:
os.remove(shadow_up_path)
os.remove(image_light_down_fix_up_path)
os.remove(output_light_up_path)
os.remove(output_result_image_path)
except:
print("删除文件错误")
if __name__ == "__main__":
arg = argparse.ArgumentParser()
arg.add_argument("-i","--image_path", type=str, default="")
args = arg.parse_args()
image_result_dir=os.path.dirname(args.image_path)
os.makedirs(image_result_dir, exist_ok=True)
start_time= time.time()
correct_texture_image(args.image_path,image_result_dir,args.image_path)
end_time = time.time()
total_time = round(end_time - start_time, 2)
print(f"处理成功,耗时 {total_time} 秒,")
"""
1、暗部提亮->白色提纯(220)->高光压暗->二次亮度调整
"""