建模程序 多个定时程序
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

492 lines
16 KiB

import os.path
import numpy as np
from PIL import Image
from scipy.ndimage import gaussian_filter
import matplotlib.pyplot as plt
from skimage import io, color
from PIL import Image
import cv2
from skimage.exposure import match_histograms
from skimage.color import rgb2lab, lab2rgb
import time
def rgb_to_lab_photoshop(rgb):
"""
将 RGB 转换为 LAB,使用 Photoshop 中的转换公式。
"""
# 线性化 RGB
r, g, b = rgb[..., 0] / 255.0, rgb[..., 1] / 255.0, rgb[..., 2] / 255.0
r = np.where(r <= 0.04045, r, ((r + 0.055) / 1.055) ** 2.4)
g = np.where(g <= 0.04045, g, ((g + 0.055) / 1.055) ** 2.4)
b = np.where(b <= 0.04045, b, ((b + 0.055) / 1.055) ** 2.4)
x = r * 0.4124564 + g * 0.3575761 + b * 0.1804375
y = r * 0.2126729 + g * 0.7151522 + b * 0.0721750
z = r * 0.0193339 + g * 0.1191920 + b * 0.9503041
# 白点 D65 归一化
x = x / 0.95047
y = y / 1.00000
z = z / 1.08883
# XYZ 到 LAB 转换
epsilon = 0.008856
kappa = 903.3
x = np.where(x > epsilon, x ** (1 / 3), (kappa * x + 16) / 116)
y = np.where(y > epsilon, y ** (1 / 3), (kappa * y + 16) / 116)
z = np.where(z > epsilon, z ** (1 / 3), (kappa * z + 16) / 116)
l = 116 * y - 16
a = 500 * (x - y)
b = 200 * (y - z)
return np.stack([l, a, b], axis=-1)
def create_mask_from_lab(lab_image, target_L, target_a, target_b, tolerance_L=5, tolerance_a=5, tolerance_b=5):
"""
根据给定的 L, a, b 值范围,生成一个掩膜。
参数:
lab_image: 输入的 LAB 图像
target_L: 目标 L 值
target_a: 目标 a 值
target_b: 目标 b 值
tolerance_L: L 值的容差范围
tolerance_a: a 值的容差范围
tolerance_b: b 值的容差范围
返回:
mask: 生成的掩膜(1 表示符合条件,0 表示不符合)
"""
mask = (
(np.abs(lab_image[..., 0] - target_L) <= tolerance_L) &
(np.abs(lab_image[..., 1] - target_a) <= tolerance_a) &
(np.abs(lab_image[..., 2] - target_b) <= tolerance_b)
).astype(np.uint8)
return mask
def filter_contours_by_enclosing_circle(mask, min_diameter=50):
"""
"""
cleaned_mask = np.zeros_like(mask)
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
# 计算最小外接圆
(x, y), radius = cv2.minEnclosingCircle(contour)
diameter = 2 * radius
# 判断是否能放下指定直径的圆
if diameter >= min_diameter:
cv2.drawContours(cleaned_mask, [contour], -1, 255, thickness=cv2.FILLED)
return cleaned_mask
# def adjust_levels_image(img):
# """"""
# img = img.astype(np.float32)
# img = 255 * ((img - 20) / (241 - 20))
# img[img < 0] = 0
# img[img > 255] = 255
# img = 255 * np.power(img / 255.0, 1.0 / 1.34)
# img = (img / 255) * (255- 0) + 0
# img[img < 0] = 0
# img[img > 255] = 255
# img = img.astype(np.uint8)
# return img
def normalize_coeffs(coeffs):
median_val = sorted(coeffs)[1]
return np.array([coef - median_val for coef in coeffs])
def img_bgr2rgb(img):
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = img.astype(np.float32) / 255.0
img = img.copy()
return img
def highlight_handle(img, highlight_coeffs):
highlights_alpha = 0.003923 * normalize_coeffs(highlight_coeffs)
a = np.diag(np.maximum(highlights_alpha, 0)) * np.eye(3)
b = np.diag(-np.minimum(highlights_alpha, 0)) * (1 - np.eye(3))
highlights_alpha = np.sum(a + b, axis=0)
img = img / (1 - highlights_alpha.reshape(1, 1, 3))
return img
def shadow_handle(img, shadows_coef):
shadows_alpha = 0.003923 * normalize_coeffs(shadows_coef)
a = np.diag(-np.minimum(shadows_alpha, 0)) * np.eye(3)
b = np.diag(np.maximum(shadows_alpha, 0)) * (1 - np.eye(3))
shadows_alpha = np.sum(a + b, axis=0)
img = (img - shadows_alpha.reshape(1, 1, 3)) / (1 - shadows_alpha.reshape(1, 1, 3))
return img
def mid_tone_handle(img, mid_tone_coeffs):
mid_tone_alpha = -0.0033944 * normalize_coeffs(mid_tone_coeffs)
f = np.diag(mid_tone_alpha) * (2 * np.eye(3) - 1)
mid_tone_gamma = np.exp(np.sum(f, axis=0))
img = np.power(img, mid_tone_gamma.reshape(1, 1, 3))
return img
def img_rgb2bgr(img):
img = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX)
img = img.astype(np.uint8)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
return img
def adjust_color_balance( image,
shadow_coefficients,
mid_tone_coefficients,
highlight_coefficients):
""""""
image = img_bgr2rgb(image)
image = highlight_handle(image, highlight_coefficients)
image = shadow_handle(image, shadow_coefficients)
image = mid_tone_handle(image, mid_tone_coefficients)
image = np.clip(image, 0, 1)
image = img_rgb2bgr(image)
cv2.imwrite('/data/datasets_20t/fsdownload/image_color_timing/white_add_white/9999999999999.jpg', image)
return image
def apply_gamut_mapping(values):
"""防止颜色溢出的色域映射函数"""
# 压缩高光区域以防止过曝
values = np.where(values > 0.9, 0.9 + (values - 0.9) * 0.5, values)
# 提亮阴影区域以防止死黑
values = np.where(values < 0.1, 0.1 * (values / 0.1) ** 0.7, values)
return np.clip(values, 0, 1)
# def match_colors(source, target, mask):
# """
# """
# matched = match_histograms(source, target, channel_axis=-1)
# mask_3ch = cv2.merge([mask] * 3) if len(mask.shape) == 2 else mask
# return source * (1 - mask_3ch) + matched * mask_3ch
# def match_colors(source, target, mask, strength):
# """
# :param source: 源图像 (H,W,3)
# :param target: 目标图像 (H,W,3)
# :param mask: 遮罩 (H,W) 或 (H,W,3), 值范围 0~1
# :param strength: 颜色匹配强度 (0~1)
# """
# matched = match_histograms(source, target, channel_axis=-1)
# mask_3ch = cv2.merge([mask] * 3) if len(mask.shape) == 2 else mask
# mask_weighted = mask_3ch * strength # 控制强度
# return source * (1 - mask_weighted) + matched * mask_weighted
def match_colors(source, target, mask, strength, brightness_scale=0.9):
matched = match_histograms(source, target, channel_axis=-1)
matched = matched * brightness_scale # 降低亮度
mask_3ch = cv2.merge([mask] * 3) if len(mask.shape) == 2 else mask
mask_weighted = mask_3ch * strength
return source * (1 - mask_weighted) + matched * mask_weighted
def apply_feathering(mask, radius):
""""""
mask_float = mask.astype(np.float32) / 255.0
blurred = cv2.GaussianBlur(mask_float, (0, 0), sigmaX=radius / 3, sigmaY=radius / 3)
return blurred
def photoshop_style_feather(image, mask, radius=150):
"""
实现接近Photoshop效果的羽化功能
参数:
image: 输入图像 (numpy array)
mask: 选区蒙版 (numpy array, 值范围0-255)
radius: 羽化半径 (像素)
返回:
羽化后的蒙版
"""
# 确保蒙版是uint8类型和单通道
if mask.dtype != np.uint8:
mask = (mask * 255).astype(np.uint8)
if len(mask.shape) > 2:
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
# 计算高斯核大小 (必须是奇数)
kernel_size = max(3, int(2 * np.ceil(2 * radius) + 1))
# 创建扩展的蒙版以模拟Photoshop的边界处理
expanded_size = (mask.shape[0] + 2 * radius, mask.shape[1] + 2 * radius)
expanded_mask = np.zeros(expanded_size, dtype=np.uint8)
# 将原始蒙版放置在扩展蒙版中央
center_y, center_x = radius, radius
expanded_mask[center_y:center_y + mask.shape[0],
center_x:center_x + mask.shape[1]] = mask
# 应用高斯模糊 (使用reflect边界处理,类似Photoshop)
blurred_expanded_mask = cv2.GaussianBlur(
expanded_mask,
(kernel_size, kernel_size),
sigmaX=radius,
sigmaY=radius,
borderType=cv2.BORDER_REFLECT_101
)
# 提取中央部分作为最终蒙版
feathered_mask = blurred_expanded_mask[center_y:center_y + mask.shape[0],
center_x:center_x + mask.shape[1]]
# 应用Photoshop特有的蒙版曲线调整
feathered_mask = feathered_mask.astype(np.float32) / 255.0
feathered_mask = np.power(feathered_mask, 1.1) # 轻微增强对比度
feathered_mask = np.clip(feathered_mask * 255, 0, 255).astype(np.uint8)
return feathered_mask
def calculate_luminance(img):
"""计算图像的亮度通道(YCbCr色彩空间的Y通道)"""
if len(img.shape) == 3:
ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb)
return ycrcb[:, :, 0].astype(np.float32) / 255.0
else:
return img.astype(np.float32) / 255.0
def photoshop_feather_blend(adjusted_img, original_img, mask, feather_radius=150, brightness_factor=0.95):
"""
使用改进的羽化蒙版融合两张图像,更接近Photoshop效果,解决偏亮问题
参数:
adjusted_img: 调整后的图像
original_img: 原始图像
mask: 选区蒙版 (范围0-255)
feather_radius: 羽化半径
brightness_compensation: 亮度补偿因子 (0.0-1.0),值越小补偿越多
返回:
融合后的图像
"""
if mask.dtype != np.uint8:
mask = (mask * 255).astype(np.uint8)
if len(mask.shape) > 2:
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
# plt.figure(figsize=(10, 8))
# plt.imshow(mask, cmap='gray')
# plt.title("Feathered Mask")
# plt.axis('off')
# plt.colorbar(label='Opacity')
# plt.show()
feathered_mask = photoshop_style_feather(original_img, mask, feather_radius)
# plt.figure(figsize=(10, 8))
# plt.imshow(feathered_mask, cmap='gray')
# plt.title("Feathered Mask")
# plt.axis('off')
# plt.colorbar(label='Opacity')
# plt.show()
feathered_mask_float = feathered_mask.astype(np.float32) / 255.0
# 扩展蒙版维度以匹配图像通道数
if len(original_img.shape) == 3 and len(feathered_mask_float.shape) == 2:
feathered_mask_float = np.stack([feathered_mask_float] * 3, axis=-1)
# 改进的混合算法,解决亮度提升问题
# 1. 将图像转换到线性空间(模拟sRGB到线性RGB的转换)
def to_linear(img):
img_linear = img.astype(np.float32) / 255.0
# 简单的gamma校正近似
return np.where(img_linear <= 0.04045,
img_linear / 12.92,
((img_linear + 0.055) / 1.055) ** 2.4)
# 2. 将图像转回sRGB空间
def to_srgb(img_linear):
return np.where(img_linear <= 0.0031308,
img_linear * 12.92,
1.055 * (img_linear ** (1 / 2.4)) - 0.055)
# 3. 在线性空间中执行混合
adjusted_linear = to_linear(adjusted_img)
original_linear = to_linear(original_img)
# 4. 应用亮度校正因子
luminance_adjustment = np.mean(original_linear, axis=-1, keepdims=True) * (1.0 - brightness_factor)
adjusted_linear_corrected = adjusted_linear - luminance_adjustment
# 5. 在线性空间中进行混合
blended_linear = (adjusted_linear_corrected * feathered_mask_float +
original_linear * (1 - feathered_mask_float))
# 6. 转回sRGB空间并转换回uint8
blended_srgb = to_srgb(blended_linear)
blended_img = np.clip(blended_srgb * 255, 0, 255).astype(np.uint8)
return blended_img
def rgb2lab_image(rgb_img):
"""将 RGB 图像转换为 Photoshop 风格的 Lab"""
rgb = rgb_img.astype(np.float32) / 255.0
mask = rgb > 0.04045
rgb = np.where(mask,
np.power((rgb + 0.055) / 1.055, 2.4),
rgb / 12.92)
XYZ = np.dot(rgb, [
[0.436052025, 0.222491598, 0.013929122],
[0.385081593, 0.716886060, 0.097097002],
[0.143087414, 0.060621486, 0.714185470]
])
XYZ *= np.array([100.0, 100.0, 100.0]) / [96.4221, 100.0, 82.5211]
epsilon = 0.008856
kappa = 903.3
XYZ_norm = np.where(XYZ > epsilon,
np.power(XYZ, 1 / 3),
(kappa * XYZ + 16) / 116)
L = 116 * XYZ_norm[..., 1] - 16
a = 500 * (XYZ_norm[..., 0] - XYZ_norm[..., 1])
b = 200 * (XYZ_norm[..., 1] - XYZ_norm[..., 2])
return np.stack([L, a, b], axis=-1)
def photoshop_lab_color_range_optimized(bgr_img, target_lab, tolerance=59, anti_alias=True):
"""优化的色彩范围选择算法,提供更精确的选择"""
rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB)
lab_img = rgb2lab_image(rgb_img)
# 分离通道
L, a, b = lab_img[:, :, 0], lab_img[:, :, 1], lab_img[:, :, 2]
target_L, target_a, target_b = target_lab
# 计算各通道差异
diff_L = np.abs(L - target_L)
diff_a = np.abs(a - target_a)
diff_b = np.abs(b - target_b)
# 暗部区域增强处理
dark_boost = np.ones_like(L)
dark_mask = L <40 # 只对较暗区域增强
dark_boost[dark_mask] = 1.2 # 增加暗部区域的敏感度
# 改进的加权差异计算,加入暗部增强
weighted_diff = np.sqrt(
0.25 * (diff_L / 100) ** 2 + # 进一步降低亮度权重
0.75 * ((diff_a + diff_b) / 255) ** 2 # 进一步增加颜色权重
) * 100
# 应用暗部增强
weighted_diff = weighted_diff / dark_boost
# 优化的容差转换公式
threshold = 1.6 * (100 - tolerance) / 100 * 23
# 应用更精确的 S 曲线,使用双曲正切函数提供更陡峭的过渡
normalized_diff = weighted_diff / threshold
mask = 0.5 * (np.tanh(4 * (1 - normalized_diff)) + 1)
# 抗锯齿处理
if anti_alias:
mask = cv2.GaussianBlur(mask, (5, 5), 0)
return mask
def photoshop_add_white(original_img, ):
""""""
#original_img = cv2.imread(input_path)
target_lab = np.array([89.06, 0.59, 6.66], dtype=np.float32)
tol= 85
mask = photoshop_lab_color_range_optimized(original_img, target_lab, tol)
# plt.figure(figsize=(10, 8))
# plt.imshow(mask, cmap='gray')
# plt.title("Feathered Mask")
# plt.axis('off')
# plt.colorbar(label='Opacity')
# plt.show()
mask_uint8 = (mask * 255).astype(np.uint8)
# adjusted_img = adjust_levels_image(original_img)
adjusted_img = adjust_color_balance(original_img,
shadow_coefficients=[0, 0, 0],
mid_tone_coefficients=[-20, 0, 5],
highlight_coefficients=[0, 0, 12],)
#cv2.imwrite('/data/datasets_20t/fsdownload/image_color_timing/white_add_white/9999999999999.jpg', adjusted_img)
#h, w = adjusted_img.shape[:2]
#mask = cv2.resize(mask_uint8, (w, h))
result = photoshop_feather_blend(adjusted_img, original_img, mask_uint8,
feather_radius=15, brightness_factor=0.9999)
#output_path="/data/datasets_20t/Downloads_google/correct_show_obj_dream_tech/290082/cache/290082Tex1_o_white.jpg"
return result
def photoshop_add_white3(input_path, ):
""""""
original_img = cv2.imread(input_path)
target_lab = np.array([89.06, 0.59, 6.66], dtype=np.float32)
tol= 85
mask = photoshop_lab_color_range_optimized(original_img, target_lab, tol)
# plt.figure(figsize=(10, 8))
# plt.imshow(mask, cmap='gray')
# plt.title("Feathered Mask")
# plt.axis('off')
# plt.colorbar(label='Opacity')
# plt.show()
mask_uint8 = (mask * 255).astype(np.uint8)
# adjusted_img = adjust_levels_image(original_img)
adjusted_img = adjust_color_balance(original_img,
shadow_coefficients=[0, 0, 0],
mid_tone_coefficients=[-20, 0, 5],
highlight_coefficients=[0, 0, 12],)
#cv2.imwrite('/data/datasets_20t/fsdownload/image_color_timing/white_add_white/9999999999999.jpg', adjusted_img)
#h, w = adjusted_img.shape[:2]
#mask = cv2.resize(mask_uint8, (w, h))
result = photoshop_feather_blend(adjusted_img, original_img, mask_uint8,
feather_radius=15, brightness_factor=0.99)
output_path="/data/datasets_20t/Downloads_google/correct_show_obj_dream_tech/290082/cache/290082Tex1_o_white.jpg"
cv2.imwrite(output_path, result)
return result
if __name__ == '__main__':
start_time = time.time()
# image_name="858408_272249Tex1_4_220.jpg"
# image_name_new= image_name.replace(".jpg","_999999.jpg")
# in_dir = "/data/datasets_20t/fsdownload/image_color_timing/output/"
# out_dir = "/data/datasets_20t/fsdownload/image_color_timing/white_add_white/"
# os.makedirs(out_dir,exist_ok=True)
input_path = "/data/datasets_20t/Downloads_google/correct_show_obj_dream_tech/290082/cache/290082Tex1_o.jpg"
photoshop_add_white3(input_path, )
print(f"程序运行时间: {time.time() - start_time:.2f}")
"""
百位加白
"""