You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
432 lines
16 KiB
432 lines
16 KiB
import redis,sys,os,re,oss2,shutil,time,cv2 |
|
import json |
|
import requests |
|
import platform |
|
import numpy as np |
|
import xml.etree.ElementTree as ET |
|
from PIL import ImageGrab |
|
if platform.system() == 'Windows': |
|
#sys.path.append('e:\\libs\\') |
|
sys.path.append('libs') |
|
else: |
|
sys.path.append('/data/deploy/make3d/make2/libs/') |
|
import config,libs |
|
|
|
#判断模型是需要高精模 或者是 需要photo3 参与 |
|
def task_need_high_model_or_photo3(pid): |
|
resHigh = task_need_high_model(pid) |
|
resPhoto3 = task_need_photo3(pid) |
|
if resHigh or resPhoto3: |
|
return True |
|
else: |
|
return False |
|
|
|
#判断是否需要高精模 |
|
def task_need_high_model(pid): |
|
redis_conn = config.redis_local_common |
|
#判断在redis中是否有高精模和 需要photo3 参与的 task |
|
if redis_conn.sismember("calculateHighModel",pid): |
|
return True |
|
#判断是否需要高精模 |
|
if redis_conn.sismember("calculateHighModel_no",pid): |
|
return False |
|
|
|
|
|
#判断是否需要高精模 |
|
if libs.aliyun_face(pid): |
|
#calulate_type = 'calculateHighModel' |
|
redis_conn.sadd("calculateHighModel",pid) |
|
return True |
|
else: |
|
redis_conn.sadd("calculateHighModel_no",pid) |
|
return False |
|
|
|
#判断是否需要photo3参与建模 |
|
def task_need_photo3(pid): |
|
redis_conn = config.redis_local_common |
|
#判断在redis中是否有高精模和 需要photo3 参与的 task |
|
if redis_conn.sismember("photo3",pid): |
|
return True |
|
#判断是否需要photo3参与建模 |
|
if redis_conn.sismember("photo3_no",pid): |
|
return False |
|
if os.path.exists(os.path.join(config.workdir, pid, 'photo3')): |
|
redis_conn.sadd("photo3",pid) |
|
return True |
|
else: |
|
redis_conn.sadd("photo3_no",pid) |
|
return False |
|
|
|
#拷贝远程主机上的指定目录到本地指定目录 |
|
def copy_remote_directory(remote_host, remote_path, local_path): |
|
# 建立 SSH 连接 |
|
ssh = paramiko.SSHClient() |
|
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) |
|
ssh.connect(remote_host, username='your_username', password='your_password') |
|
|
|
# 创建 SFTP 客户端 |
|
sftp = ssh.open_sftp() |
|
|
|
# 获取远程目录下的所有文件/子目录 |
|
file_list = sftp.listdir(remote_path) |
|
|
|
# 遍历远程目录中的每个文件/子目录 |
|
for file_name in file_list: |
|
remote_file_path = os.path.join(remote_path, file_name) |
|
local_file_path = os.path.join(local_path, file_name) |
|
|
|
# 判断当前项是文件还是目录 |
|
if sftp.stat(remote_file_path).st_isdir(): |
|
# 如果是目录,递归调用函数进行拷贝 |
|
os.makedirs(local_file_path, exist_ok=True) |
|
copy_remote_directory(remote_host, remote_file_path, local_file_path) |
|
else: |
|
# 如果是文件,直接拷贝到指定目录 |
|
sftp.get(remote_file_path, local_file_path) |
|
|
|
# 关闭 SFTP 客户端和 SSH 连接 |
|
sftp.close() |
|
ssh.close() |
|
|
|
#移除redis中的高精模和 需要photo3 参与的 task |
|
# def remove_redis_high_model_or_photo3(pid): |
|
# redis_conn = config.redis_local_common |
|
# redis_conn.srem("calculateHighModel",pid) |
|
# redis_conn.srem("photo3",pid) |
|
|
|
|
|
# if __name__ == '__main__': |
|
# redis_conn = config.redis_local_common |
|
# print(redis_conn.sismember("photo3_no","1")) |
|
|
|
#读取rcbox文件进行修改指定的值 |
|
|
|
def change_rcbox_s(pid,new_value): |
|
rcbox_path = os.path.join(config.workdir, pid, f"{pid}.rcbox") |
|
old_value_pattern = r'<Residual s="([^"]+)"' |
|
#读取文件内容 |
|
with open(rcbox_path, 'r') as f: |
|
content = f.read() |
|
#使用正则表达式进行匹配 |
|
match = re.search(old_value_pattern,content) |
|
if match: |
|
old_value = match.group(1) |
|
new_content = re.sub(old_value_pattern,f'<Residual s="{new_value}"',content) |
|
#重新写入进去 |
|
with open(rcbox_path, 'w') as f: |
|
f.write(new_content) |
|
|
|
#读取 rcbox 修改 widthHeightDepth 重建区域的深度 |
|
def change_rcbox_deepth(pid,new_value): |
|
rcbox_path = os.path.join(config.workdir, pid, f"{pid}.rcbox") |
|
old_value_pattern = r'<widthHeightDepth>(.*?)</widthHeightDepth>' |
|
#读取文件内容 |
|
with open(rcbox_path, 'r') as f: |
|
content = f.read() |
|
#使用正则表达式进行匹配 |
|
match = re.search(old_value_pattern,content) |
|
if match: |
|
old_value = match.group(1) |
|
if old_value == "": |
|
return |
|
#分割字符串 |
|
arrStr = old_value.split(" ") |
|
#重新拼接字符串 |
|
strs = arrStr[0]+" "+arrStr[1]+" "+str(float(arrStr[2])+new_value) |
|
new_content = re.sub(old_value_pattern,f'<widthHeightDepth>{strs}</widthHeightDepth>',content) |
|
#重新写入进去 |
|
with open(rcbox_path, 'w') as f: |
|
f.write(new_content) |
|
|
|
def change_rcbox_center(pid,new_value): |
|
rcbox_path = os.path.join(config.workdir, pid, f"{pid}.rcbox") |
|
old_value_pattern = r'<center>(.*?)</center>' |
|
#读取文件内容 |
|
with open(rcbox_path, 'r') as f: |
|
content = f.read() |
|
#使用正则表达式进行匹配 |
|
match = re.search(old_value_pattern,content) |
|
if match: |
|
old_value = match.group(1) |
|
if old_value == "": |
|
return |
|
#分割字符串 |
|
arrStr = old_value.split(" ") |
|
#重新拼接字符串 |
|
strs = arrStr[0]+" "+arrStr[1]+" "+str(new_value) |
|
new_content = re.sub(old_value_pattern,f'<center>{strs}</center>',content) |
|
#重新写入进去 |
|
with open(rcbox_path, 'w') as f: |
|
f.write(new_content) |
|
|
|
#修改rcproj文件,删除没有模型的component,保留最多model 的component |
|
def changeRcprojFile(pid): |
|
# 解析XML文件 |
|
file_path = os.path.join(config.workdir, pid, f'{pid}.rcproj') |
|
#判断文件是否存在 |
|
if not os.path.exists(file_path): |
|
return False |
|
tree = ET.parse(file_path) |
|
root = tree.getroot() |
|
# 遍历所有的reconstructions节点 |
|
for reconstruction in root.findall('reconstructions'): |
|
for component in reconstruction.findall('component'): |
|
if component.find('model') == None: |
|
reconstruction.remove(component) |
|
continue |
|
# 获取所有包含model标签的component节点 |
|
components_with_model = [component for component in reconstruction.findall('component') if component.find('model') is not None] |
|
print(components_with_model) |
|
# 如果包含model标签的component节点数量大于1,则按照model数量降序排序 |
|
if len(components_with_model) > 1: |
|
components_with_model.sort(key=lambda x: len(x.findall('model')), reverse=False) |
|
|
|
for i in range(len(components_with_model)-1): |
|
reconstruction.remove(components_with_model[i]) |
|
|
|
# 保存修改后的XML文件 |
|
tree.write(file_path) |
|
return True |
|
#修改 rcproj 文件中的 controlpoints 文件的引用 |
|
def changeRcprojControlpointsFile(pid): |
|
psid = libs.getPSid(pid) |
|
# 解析XML文件 |
|
file_path = os.path.join(config.workdir, str(pid), f'{pid}.rcproj') |
|
#判断文件是否存在 |
|
if not os.path.exists(file_path): |
|
return False |
|
#下载指定的psid的 points文件到本地 |
|
flag = down_points_from_oss(pid,psid) |
|
if flag == False: |
|
return False |
|
tree = ET.parse(file_path) |
|
root = tree.getroot() |
|
# 遍历所有的reconstructions节点 |
|
for controlpoints in root.findall('controlpoints'): |
|
#修改 controlpoints 标签内容里 双引号的内容 <controlpoints fileName="" /> |
|
controlpoints.set('fileName',f'controlpoints_{psid}.dat') |
|
# 保存修改后的XML文件 |
|
tree.write(file_path) |
|
return True |
|
|
|
|
|
def down_points_from_oss(pid,psid): |
|
# 根据前缀获取文件列表 |
|
prefix = f'points/{psid}/' |
|
filelist = oss2.ObjectIteratorV2(config.oss_bucket, prefix=prefix) |
|
flag = False |
|
for file in filelist: |
|
filename = file.key.split('/')[-1] |
|
if filename.endswith('.dat'): |
|
# print('正在下载:', file.key) |
|
localfile = os.path.join(config.workdir,str(pid), filename) |
|
config.oss_bucket.get_object_to_file(file.key, localfile) |
|
flag = True |
|
return flag |
|
|
|
#判断oss上是否存在指定的controlpoints文件 |
|
def isExistControlPointsOss(pid): |
|
return False |
|
psid = libs.getPSid(pid) |
|
filePath = f'points/{psid}/controlpoints_{psid}.dat' |
|
#判断oss上是否存在 |
|
if config.oss_bucket.object_exists(filePath): |
|
return True |
|
else: |
|
return False |
|
|
|
#将本地的controlpoints文件上传到oss上 |
|
def uploadControlPointsOss(pid): |
|
psid = libs.getPSid(pid) |
|
filePath = f'points/{psid}/controlpoints_{psid}.dat' |
|
localfile = os.path.join(config.workdir,str(pid), f'{str(pid)}_wait/controlpoints0.dat') |
|
#进行上传 |
|
config.oss_bucket.put_object_from_file(filePath, localfile) |
|
|
|
#截屏保存 |
|
def saveScreenImg(pid): |
|
#判断pid 是否是数字 |
|
if str(pid).isdigit() == False: |
|
return |
|
|
|
if pid == 0 or pid == "": |
|
return "pid 等于空" |
|
#获取当前的日志 |
|
if not os.path.exists(os.path.join(config.workdir,"screen", time.strftime("%y%m%d",time.localtime()))): |
|
os.makedirs(os.path.join(config.workdir,"screen", time.strftime("%y%m%d",time.localtime()))) |
|
screenshot = ImageGrab .grab() |
|
screenshot.save(os.path.join(config.workdir,"screen", time.strftime("%y%m%d",time.localtime()))+"/"+str(pid)+".png") |
|
#移动到e盘 |
|
if not os.path.exists(os.path.join(config.sharedir,"screen", time.strftime("%y%m%d",time.localtime()))): |
|
os.makedirs(os.path.join(config.sharedir,"screen", time.strftime("%y%m%d",time.localtime()))) |
|
shutil.copy(os.path.join(config.workdir,"screen", time.strftime("%y%m%d",time.localtime()))+"\\"+str(pid)+".png", os.path.join(config.sharedir,"screen", time.strftime("%y%m%d",time.localtime()))) |
|
|
|
|
|
#文件夹的移动和删除 |
|
def removeFolder(pid): |
|
#判断是否存在finished文件夹,没有则创建 |
|
if not os.path.exists(os.path.join(config.workdir, 'finished')): |
|
os.makedirs(os.path.join(config.workdir, 'finished')) |
|
#移动文件夹到指定路径,如果已经存在了就删除再移动 |
|
if os.path.exists(os.path.join(config.workdir, 'finished', pid)): |
|
shutil.rmtree(os.path.join(config.workdir, 'finished', pid), ignore_errors=True) |
|
shutil.move(os.path.join(config.workdir, pid), os.path.join(config.workdir, 'finished')) |
|
#遍历finished 里的文件夹,超过三天的就都删除 |
|
for file in os.listdir(os.path.join(config.workdir, 'finished')): |
|
if os.path.isdir(os.path.join(config.workdir, 'finished', file)): |
|
file_time = os.path.getmtime(os.path.join(config.workdir, 'finished', file)) |
|
now_time = time.time() |
|
if (now_time - file_time) > 259200: |
|
shutil.rmtree(os.path.join(config.workdir, 'finished', file), ignore_errors=True) |
|
|
|
|
|
def find_last_x(image, slope_threshold = 1000): |
|
x = [] |
|
y = [] |
|
hist, bins = np.histogram(image, bins=256, range=[0, 256]) |
|
|
|
#找到50以内的最高峰 |
|
max_y = 0 |
|
max_i = 5 |
|
for i in range(5, 50): |
|
if hist[i] > max_y: |
|
max_y = hist[i] |
|
max_i = i |
|
print(f'50以内最高峰值y:{max_y},最高峰位置x:{max_i}') |
|
|
|
for i in range(2, max_i): |
|
x.append(i) |
|
y.append(hist[i]) |
|
slopes = [abs(y[i + 1] - y[i]) for i in range(len(x) - 1)] |
|
|
|
current_interval = [] |
|
max_interval = [] |
|
max_x = {} |
|
for i, slope in enumerate(slopes): |
|
current_interval.append(slope) |
|
if slope >= slope_threshold: |
|
if len(current_interval) > len(max_interval): |
|
max_interval = current_interval.copy() |
|
max_x[x[i]] = slope |
|
current_interval = [] |
|
|
|
print(max_x) |
|
last_x = list(max_x)[-1] |
|
last_y = max_x[last_x] |
|
return last_x, last_y |
|
|
|
def high_find_histogram_range(image, target_frequency): |
|
''' |
|
循环查找在 target_frequency (y)频次限制下的直方图区间值(x) |
|
:param image: 导入图片 |
|
:param target_frequency: 直方图 y 频次限制条件 |
|
:return: 直方图区间 x,和 该区间频次 y |
|
''' |
|
# 计算灰度直方图 |
|
hist, bins = np.histogram(image, bins=256, range=[0, 256]) |
|
# 初始化区间和频次 |
|
interval = 255 |
|
frequency = hist[255] |
|
while frequency < target_frequency: |
|
# 更新区间和频次 |
|
interval -= 1 |
|
# 检查直方图的频次是否为None,如果频次是None,则将其设为0,这样可以避免将None和int进行比较报错。 |
|
frequency = hist[interval] if hist[interval] is not None else 0 |
|
frequency += hist[interval] if hist[interval] is not None else 0 |
|
# 如果频次接近10000则停止循环 |
|
if target_frequency - 2000 <= frequency <= target_frequency + 2000: |
|
break |
|
|
|
return interval, frequency |
|
|
|
def ps_color_scale_adjustment(image, shadow=0, highlight=255, midtones=1): |
|
''' |
|
模拟 PS 的色阶调整; 0 <= Shadow < Highlight <= 255 |
|
:param image: 传入的图片 |
|
:param shadow: 黑场(0-Highlight) |
|
:param highlight: 白场(Shadow-255) |
|
:param midtones: 灰场(9.99-0.01) |
|
:return: 图片 |
|
''' |
|
if highlight > 255: |
|
highlight = 255 |
|
if shadow < 0: |
|
shadow = 0 |
|
if shadow >= highlight: |
|
shadow = highlight - 2 |
|
if midtones > 9.99: |
|
midtones = 9.99 |
|
if midtones < 0.01: |
|
midtones = 0.01 |
|
image = np.array(image, dtype=np.float16) |
|
# 计算白场 黑场离差 |
|
Diff = highlight - shadow |
|
image = image - shadow |
|
image[image < 0] = 0 |
|
image = (image / Diff) ** (1 / midtones) * 255 |
|
image[image > 255] = 255 |
|
image = np.array(image, dtype=np.uint8) |
|
|
|
return image |
|
|
|
|
|
|
|
def remove_gray_and_sharpening(jpg_path): |
|
#low_y_limit = 25000 |
|
high_y_limit = 13000 |
|
input_image = cv2.imread(jpg_path) |
|
# low_x_thresh, low_y_frequency = low_find_histogram_range(input_image, low_y_limit) |
|
low_x_thresh, low_y_frequency = find_last_x(input_image, 1000) |
|
high_x_thresh, high_y_frequency = high_find_histogram_range(input_image, high_y_limit) |
|
print(f"{low_x_thresh} 区间, {low_y_frequency} 频次") |
|
print(f"{high_x_thresh} 区间, {high_y_frequency} 频次") |
|
high_output_image = ps_color_scale_adjustment(input_image, shadow=low_x_thresh, highlight=high_x_thresh, midtones=1) |
|
cv2.imwrite(jpg_path, high_output_image, [cv2.IMWRITE_JPEG_QUALITY, 95]) # 保存图片的质量是原图的 95% |
|
|
|
#读取指定路径判断是否对齐成功 |
|
def isAlignNums(strPid): |
|
#拼接路径 |
|
csvPath = os.path.join(config.workdir, strPid, strPid+"_align.csv") |
|
print(csvPath) |
|
#判断文件是否存在 |
|
if os.path.exists(csvPath) == False: |
|
return "rebuild" |
|
#读取文件行数 |
|
lines = "" |
|
with open(csvPath, 'r') as f: |
|
lines = f.readlines() |
|
#获取长度 |
|
lines = len(lines) - 1 |
|
#获取pid对应的 photo1 和 photo2 的数量 |
|
photo1Num = 0 |
|
photo2Num = 0 |
|
for file in os.listdir(os.path.join(config.workdir, strPid, 'photo1')): |
|
if file.endswith('.jpg'): |
|
photo1Num += 1 |
|
|
|
for file in os.listdir(os.path.join(config.workdir, strPid, 'photo2')): |
|
if file.endswith('.jpg'): |
|
photo2Num += 1 |
|
#获取图片总数 |
|
totalPhotos = photo1Num + photo2Num |
|
#比对对齐数量 |
|
if totalPhotos - lines >= 4: |
|
return "rebuild" |
|
|
|
return True |
|
|
|
|
|
#消息通知 |
|
def notify(content): |
|
|
|
if content == "": |
|
return "content 不能为空" |
|
|
|
for user_agent_id in config.notify_user_Ids: |
|
data = { |
|
'userId': user_agent_id, |
|
'message': content, |
|
} |
|
headers = {'Content-Type': 'application/json'} |
|
message_send_url = "https://mp.api.suwa3d.com/api/qyNotify/sendMessage?userId="+user_agent_id+"&message="+content |
|
response = requests.post(message_send_url, data=json.dumps(data), headers=headers) |