建模程序 多个定时程序
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

138 lines
4.5 KiB

import argparse
import cv2
import numpy as np
def find_last_x(image, slope_threshold = 1000):
x,y = [],[]
hist, bins = np.histogram(image, bins=256, range=[0, 256])
#找到50以内的最高峰
max_y , max_i = 0, 5
for i in range(5, 25):
if hist[i] > max_y:
max_y = hist[i]
max_i = i
print(f'50以内最高峰值y:{max_y},最高峰位置x:{max_i}')
for i in range(2, max_i):
x.append(i)
y.append(hist[i])
slopes = [abs(y[i + 1] - y[i]) for i in range(len(x) - 1)]
current_interval = []
max_interval = []
max_x = {}
for i, slope in enumerate(slopes):
current_interval.append(slope)
if slope >= slope_threshold:
if len(current_interval) > len(max_interval):
max_interval = current_interval.copy()
max_x[x[i]] = slope
current_interval = []
print(max_x)
last_x = list(max_x)[-1]
last_y = max_x[last_x]
return last_x, last_y
def find_last_high(image, slope_threshold = 2500):
x = []
y = []
hist, bins = np.histogram(image, bins=255, range=[2, 255])
#找到200以上的最高峰
max_y = 0
max_i = 254
for i in range(220, 255):
if hist[i] > max_y:
max_y = hist[i]
max_i = i
print(f'200以上的最高峰值y:{max_y},最高峰位置x:{max_i}')
for i in range(max_i, 255):
x.append(i)
y.append(hist[i])
slopes = [abs(y[i + 1] - y[i]) for i in range(len(x) - 1)]
current_interval = []
max_interval = []
max_x = {}
find = False
for i in range(len(slopes) - 1, -1, -1):
slope = slopes[i]
current_interval.append(slope)
if slope >= slope_threshold:
find = True
if len(current_interval) > len(max_interval):
max_interval = current_interval.copy()
max_x[x[i]] = slope
current_interval = []
#如果没有找到200以上很平,而且高度小于5000,就按220位置削平
if not find and hist[220] < 5000:
max_x[220] = hist[220]
print(max_x)
if len(max_x) > 0:
last_x = list(max_x)[0]
last_y = max_x[last_x]
else:
print(f'找不到200以上曲线较平的区间,使用254作为最高峰')
last_x = 254
last_y = hist[254]
return last_x, last_y
def ps_color_scale_adjustment(image, shadow=0, highlight=255, midtones=1):
'''
模拟 PS 的色阶调整; 0 <= Shadow < Highlight <= 255
:param image: 传入的图片
:param shadow: 黑场(0-Highlight)
:param highlight: 白场(Shadow-255)
:param midtones: 灰场(9.99-0.01)
:return: 图片
'''
if highlight > 255:
highlight = 255
if shadow < 0:
shadow = 0
if shadow >= highlight:
shadow = highlight - 2
if midtones > 9.99:
midtones = 9.99
if midtones < 0.01:
midtones = 0.01
image = np.array(image, dtype=np.float16)
# 计算白场 黑场离差
Diff = highlight - shadow
image = image - shadow
image[image < 0] = 0
image = (image / Diff) ** (1 / midtones) * 255
image[image > 255] = 255
image = np.array(image, dtype=np.uint8)
return image
def white_purification_utils(image_path):
input_image = cv2.imread(image_path)
# low_x_thresh, low_y_frequency = low_find_histogram_range(input_image, low_y_limit)
low_x_thresh, low_y_frequency = find_last_x(input_image)
# high_x_thresh, high_y_frequency = high_find_histogram_range(input_image, high_y_limit)
high_x_thresh, high_y_frequency = find_last_high(input_image)
print(f"{low_x_thresh} 区间, {low_y_frequency} 频次")
print(f"{high_x_thresh} 区间, {high_y_frequency} 频次")
high_output_image = ps_color_scale_adjustment(input_image, shadow=low_x_thresh, highlight=high_x_thresh, midtones=1)
file_extension = image_path.lower().split('.')[-1]
if file_extension == 'png':
cv2.imwrite(image_path, high_output_image) # PNG格式无需压缩参数
else:
# cv2.imwrite(image_path.replace(".jpg", '_white.jpg'), high_output_image, [cv2.IMWRITE_JPEG_QUALITY, 95]) # 保存图片的质量是原图的 95%
cv2.imwrite(image_path, high_output_image, [cv2.IMWRITE_JPEG_QUALITY, 95]) # 保存图片的质量是原图的 95%
# if __name__ == "__main__":
# parser = argparse.ArgumentParser()
# parser.add_argument("-i","--image_path", type=str, default="")
# args = parser.parse_args()
# white_purification_utils(args.image_path)