You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
354 lines
11 KiB
354 lines
11 KiB
import os.path |
|
import shutil |
|
import time |
|
import argparse |
|
import cv2 |
|
import numpy as np |
|
from scipy.interpolate import CubicSpline |
|
import sys, os |
|
from PIL import Image, ImageEnhance |
|
sys.path.append(os.path.dirname(os.path.abspath(__file__))) |
|
from ps_image_shadow_up_ag_two_d import photoshop_actions_emulation |
|
|
|
|
|
def smootherstep(x): |
|
"""五次平滑插值函数:更加平滑过渡""" |
|
return x**3 * (x * (x * 6 - 15) + 10) |
|
|
|
|
|
def perceptual_smooth_adjustment_color_blend(img, threshold=220, reduction=0.5, margin=10, saturation_sensitivity=0.3, blur_radius=5, color_blend_strength=0.5): |
|
""" |
|
更平滑、颜色融合感知亮度压制 |
|
|
|
- threshold: 压制起始亮度(V 通道) |
|
- reduction: 压制强度(0-1) |
|
- margin: 阈值过渡区间(像素亮度差) |
|
- saturation_sensitivity: 饱和度高时减弱压制 |
|
- blur_radius: 用于颜色融合的模糊半径 |
|
- color_blend_strength: 颜色融合程度(0~1) |
|
""" |
|
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) |
|
h, s, v = cv2.split(hsv) |
|
|
|
v = v.astype(np.float32) |
|
s = s.astype(np.float32) |
|
|
|
# 饱和度感知压制减弱 |
|
sat_weight = 1.0 - (s / 255.0 * saturation_sensitivity) |
|
sat_weight = np.clip(sat_weight, 0.0, 1.0) |
|
|
|
# 平滑压制权重计算 |
|
delta = v - threshold |
|
transition = np.zeros_like(v, dtype=np.float32) |
|
|
|
in_range = (delta > 0) & (delta < margin) |
|
transition[in_range] = smootherstep(delta[in_range] / margin) |
|
transition[delta >= margin] = 1.0 |
|
|
|
# 压制权重融合 |
|
weight = reduction * transition * sat_weight |
|
|
|
# 应用压制 |
|
v_new = v - (v - threshold) * weight |
|
v_new = np.clip(v_new, 0, 255).astype(np.uint8) |
|
|
|
# 合成压制后的图像 |
|
adjusted_hsv = cv2.merge([h, s.astype(np.uint8), v_new]) |
|
adjusted = cv2.cvtColor(adjusted_hsv, cv2.COLOR_HSV2BGR) |
|
|
|
# ------------------- |
|
# 融合原图模糊版 → 减少颜色突兀 |
|
# ------------------- |
|
blurred = cv2.GaussianBlur(img, (blur_radius | 1, blur_radius | 1), 0) |
|
|
|
# 构建融合权重 mask,仅对过渡区域起作用 |
|
color_blend_mask = np.clip(weight, 0, 1) * color_blend_strength |
|
color_blend_mask = color_blend_mask[..., None] # 扩展为 (H,W,1) 用于通道融合 |
|
|
|
# 将融合区域混合模糊 |
|
final = adjusted.astype(np.float32) * (1 - color_blend_mask) + blurred.astype(np.float32) * color_blend_mask |
|
final = np.clip(final, 0, 255).astype(np.uint8) |
|
|
|
return final |
|
|
|
|
|
def process_image(input_path, output_path, threshold=210, reduction=0.6): |
|
""" |
|
""" |
|
try: |
|
img = cv2.imread(input_path) |
|
if img is None: |
|
raise ValueError("无法读取图像,请检查路径是否正确") |
|
|
|
#result = perceptual_adjustment(img, threshold, reduction) |
|
result = perceptual_smooth_adjustment_color_blend(img, threshold, reduction) |
|
|
|
cv2.imwrite(output_path, result) |
|
print(f"处理成功,结果已保存到: {output_path}") |
|
|
|
return True |
|
|
|
except Exception as e: |
|
print(f"处理失败: {str(e)}") |
|
return False |
|
|
|
def sigmoid(x, center=0.0, slope=10.0): |
|
return 1 / (1 + np.exp(-slope * (x - center))) |
|
|
|
|
|
def reduce_highlights_lab_advanced_hsvmask( |
|
img, |
|
highlight_thresh=220, |
|
strength=30, |
|
sigma=15, |
|
detail_boost=1.0, |
|
preserve_local_contrast=True |
|
): |
|
""" |
|
LAB高光压制 + HSV感知蒙版 + 细节保留 |
|
""" |
|
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) |
|
V = hsv[:, :, 2].astype(np.float32) |
|
|
|
# 1. 生成高光 mask,过渡平滑 |
|
mask = sigmoid(V, center=highlight_thresh, slope=0.05) |
|
mask = np.clip(mask, 0, 1) |
|
mask = cv2.GaussianBlur(mask, (0, 0), sigmaX=2) |
|
|
|
mask_vis = (mask * 255).astype(np.uint8) |
|
|
|
# 2. LAB 空间亮度压制 |
|
img_lab = cv2.cvtColor(img, cv2.COLOR_BGR2Lab) |
|
L, a, b = cv2.split(img_lab) |
|
L = L.astype(np.float32) |
|
|
|
# 3. 模糊和细节 |
|
L_blur = cv2.GaussianBlur(L, (0, 0), sigma) |
|
L_detail = L - L_blur |
|
|
|
# 4. 替代方案:压制 L,但融合方式更柔和 |
|
L_target = L_blur - strength * mask |
|
L_target = np.clip(L_target, 0, 255) |
|
|
|
if preserve_local_contrast: |
|
# 保留细节 + 局部对比度(避免过度平滑) |
|
L_new = L_target + detail_boost * L_detail |
|
else: |
|
# 单纯压制亮度 |
|
L_new = L_target |
|
|
|
L_new = np.clip(L_new, 0, 255).astype(np.uint8) |
|
|
|
# 5. 合成回去 |
|
lab_new = cv2.merge([L_new, a, b]) |
|
result = cv2.cvtColor(lab_new, cv2.COLOR_Lab2BGR) |
|
|
|
return result, mask_vis |
|
|
|
def suppress_highlights_keep_texture(image_bgr, v_thresh=225, target_v=215, sigma=1): |
|
"""""" |
|
|
|
image_hsv = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2HSV) |
|
h, s, v = cv2.split(image_hsv) |
|
v = v.astype(np.float32) |
|
|
|
v_blur = cv2.GaussianBlur(v, (0, 0), sigmaX=sigma) |
|
detail = v - v_blur |
|
|
|
# 构建 soft mask(0~1),用于动态压制 |
|
mask = (v_blur > v_thresh).astype(np.float32) |
|
# weight 越大压得越狠 |
|
weight = np.clip((v_blur - v_thresh) / 20.0, 0, 1) * mask # 20 是压制带宽 |
|
#weight =weight*1.2 |
|
# 将亮度压到 target_v 的线性混合: |
|
v_compress = v_blur * (1 - weight) + target_v * weight |
|
|
|
v_new = v_compress + detail |
|
v_new = np.clip(v_new, 0, 255).astype(np.uint8) |
|
|
|
hsv_new = cv2.merge([h, s, v_new]) |
|
result_bgr = cv2.cvtColor(hsv_new, cv2.COLOR_HSV2BGR) |
|
|
|
return result_bgr |
|
|
|
def correct_light_again_hsv(image_path): |
|
img = cv2.imread(image_path) |
|
result, mask_vis = reduce_highlights_lab_advanced_hsvmask( |
|
img, |
|
highlight_thresh=225, |
|
strength=15, |
|
sigma=10, |
|
detail_boost=1.2 |
|
) |
|
result_bgr= suppress_highlights_keep_texture(result) |
|
output_image_path = image_path.replace(".jpg", "_light02.jpg") |
|
cv2.imwrite( |
|
output_image_path, |
|
result_bgr |
|
) |
|
return output_image_path |
|
|
|
def generate_curve_lut(x_points, y_points): |
|
""" |
|
输入采样点,生成 256 长度的查找表(LUT) |
|
""" |
|
cs = CubicSpline(x_points, y_points, bc_type='natural') |
|
x = np.arange(256) |
|
y = cs(x) |
|
y = np.clip(y, 0, 255).astype(np.uint8) |
|
return y |
|
|
|
def apply_curve(img, lut): |
|
""" |
|
对图像的每个通道应用曲线 LUT(复合通道) |
|
""" |
|
result = cv2.LUT(img, lut) |
|
return result |
|
|
|
|
|
def apply_curve_up_image(image_path,image_cache_dir): |
|
"""提亮""" |
|
x_points = [0, 124, 255] |
|
y_points = [0, 131, 255] |
|
lut = generate_curve_lut(x_points, y_points) |
|
#adjusted = apply_curve(img, lut) |
|
|
|
image_name_result = image_path.split("/")[-1].replace(".jpg", "_up.jpg") |
|
result_path= os.path.join(image_cache_dir,image_name_result) |
|
image_bgr = cv2.imread(image_path) |
|
image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB) |
|
image_hsv = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2HSV).astype(np.float32) |
|
h, s, v = cv2.split(image_hsv) |
|
v_mean = np.mean(v) |
|
print(f"v_mean{v_mean}") |
|
if v_mean < 60: |
|
adjusted = apply_curve(image_bgr, lut) |
|
adjusted2 = apply_curve(adjusted, lut) |
|
cv2.imwrite(result_path, adjusted2) |
|
return result_path |
|
|
|
else: |
|
image_name_result = image_path.split("/")[-1].replace(".jpg", "_o.jpg") |
|
result_original_path = os.path.join(image_cache_dir, image_name_result) |
|
shutil.copy(image_path,result_original_path) |
|
return result_original_path |
|
|
|
def apply_curve_down_image(image_path,image_cache_dir): |
|
"""压暗""" |
|
x_points = [0, 131, 255] |
|
y_points = [0, 124, 255] |
|
lut = generate_curve_lut(x_points, y_points) |
|
# adjusted = apply_curve(img, lut) |
|
image_name_result = image_path.split("/")[-1].replace(".jpg", "_down.jpg") |
|
result_path= os.path.join(image_cache_dir,image_name_result) |
|
image_bgr = cv2.imread(image_path) |
|
image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB) |
|
image_hsv = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2HSV).astype(np.float32) |
|
h, s, v = cv2.split(image_hsv) |
|
|
|
v_mean = np.mean(v) |
|
print(f"v_mean{v_mean}") |
|
if v_mean > 110: |
|
adjusted = apply_curve(image_bgr, lut) |
|
adjusted2 = apply_curve(adjusted, lut) |
|
cv2.imwrite(result_path, adjusted2) |
|
return result_path |
|
else: |
|
image_name_result = image_path.split("/")[-1].replace(".jpg", "_o.jpg") |
|
result_original_path = os.path.join(image_cache_dir, image_name_result) |
|
shutil.copy(image_path, result_original_path) |
|
return result_original_path |
|
|
|
|
|
def sharpen_image(image_path, output_path): |
|
""" |
|
修复颜色问题的锐化处理函数 |
|
""" |
|
# 1. 读取图片并确保RGB格式 |
|
image = cv2.imread(image_path) |
|
if image is None: |
|
raise ValueError("无法读取图片,请检查路径是否正确") |
|
|
|
# 2. 转换为RGB并保持一致性 |
|
rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
|
|
# 3. 使用PIL处理时不再转换 |
|
pil_img = Image.fromarray(rgb_image) |
|
|
|
# 3.1 锐化处理 |
|
enhancer = ImageEnhance.Sharpness(pil_img) |
|
sharpened = enhancer.enhance(2.0) |
|
|
|
# 3.2 对比度增强 |
|
contrast_enhancer = ImageEnhance.Contrast(sharpened) |
|
final_image = contrast_enhancer.enhance(1.2) |
|
|
|
# 4. 转换回numpy数组 |
|
cv_image = np.array(final_image) |
|
|
|
# 5. 修复颜色问题的非锐化掩蔽 |
|
# 先分离通道,分别处理,再合并 |
|
b, g, r = cv2.split(cv_image) |
|
|
|
def unsharp_channel(channel): |
|
blurred = cv2.GaussianBlur(channel, (0, 0), 3) |
|
return cv2.addWeighted(channel, 1.5, blurred, -0.5, 0) |
|
|
|
b_sharp = unsharp_channel(b) |
|
g_sharp = unsharp_channel(g) |
|
r_sharp = unsharp_channel(r) |
|
|
|
# 合并通道 |
|
sharpened_cv = cv2.merge([b_sharp, g_sharp, r_sharp]) |
|
|
|
# 6. 保存结果(保持BGR格式) |
|
cv2.imwrite(output_path, cv2.cvtColor(sharpened_cv, cv2.COLOR_RGB2BGR)) |
|
|
|
def correct_texture_image(input_path,image_result_dir,output_path): |
|
"""""" |
|
|
|
image_cache_dir= os.path.join(image_result_dir,"cache") |
|
os.makedirs(image_cache_dir, exist_ok=True) |
|
input_path_cure_up = apply_curve_up_image(input_path,image_cache_dir) |
|
|
|
input_path_cure_down_result = apply_curve_down_image(input_path_cure_up,image_cache_dir) |
|
|
|
|
|
print("input_path_correct", input_path_cure_down_result) |
|
shadow_up_path = input_path_cure_down_result.replace(".jpg", "_shadow_shadow_add_color_white_unsharp.jpg") |
|
photoshop_actions_emulation(input_path_cure_down_result, shadow_up_path) |
|
|
|
shutil.copy(shadow_up_path,output_path) |
|
time.sleep(1) |
|
try: |
|
shutil.rmtree(image_cache_dir) |
|
except: |
|
print("删除文件错误") |
|
|
|
return shadow_up_path |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
arg = argparse.ArgumentParser() |
|
arg.add_argument('-input_path', type=str, default=f"") |
|
arg.add_argument('-output_path', type=str, default=f"") |
|
args = arg.parse_args() |
|
image_result_dir=os.path.dirname(args.output_path) |
|
os.makedirs(image_result_dir, exist_ok=True) |
|
|
|
start_time= time.time() |
|
correct_texture_image(args.input_path,image_result_dir,args.output_path) |
|
end_time = time.time() |
|
total_time = round(end_time - start_time, 2) |
|
""" |
|
DreamTech,PS动作F7两次+Shift F7一次 |
|
F7:::加暗*2 |
|
Shift F7 公仔*1 |
|
公仔: 加暗,加暗,加饱和度上色,白位加白,锐化 |
|
""" |
|
|
|
|
|
|
|
|
|
|