You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
122 lines
5.3 KiB
122 lines
5.3 KiB
/**************************************************************************** |
|
* VCGLib o o * |
|
* Visual and Computer Graphics Library o o * |
|
* _ O _ * |
|
* Copyright(C) 2004-2016 \/)\/ * |
|
* Visual Computing Lab /\/| * |
|
* ISTI - Italian National Research Council | * |
|
* \ * |
|
* All rights reserved. * |
|
* * |
|
* This program is free software; you can redistribute it and/or modify * |
|
* it under the terms of the GNU General Public License as published by * |
|
* the Free Software Foundation; either version 2 of the License, or * |
|
* (at your option) any later version. * |
|
* * |
|
* This program is distributed in the hope that it will be useful, * |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of * |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * |
|
* for more details. * |
|
* * |
|
****************************************************************************/ |
|
/*! \file trimesh_inertia.cpp |
|
\ingroup code_sample |
|
|
|
\brief An example of computing the inertia properties of meshes |
|
|
|
Two meshes are created a rectangular box and a torus and their mass properties are computed and shown. |
|
The result should match the closed formula for these objects (with a reasonable approximation) |
|
|
|
*/ |
|
|
|
#include<vcg/complex/complex.h> |
|
|
|
#include<wrap/io_trimesh/import_off.h> |
|
|
|
#include<vcg/complex/algorithms/inertia.h> |
|
#include<vcg/complex/algorithms/create/platonic.h> |
|
|
|
class MyEdge; |
|
class MyFace; |
|
class MyVertex; |
|
struct MyUsedTypes : public vcg::UsedTypes< vcg::Use<MyVertex> ::AsVertexType, |
|
vcg::Use<MyEdge> ::AsEdgeType, |
|
vcg::Use<MyFace> ::AsFaceType>{}; |
|
|
|
class MyVertex : public vcg::Vertex<MyUsedTypes, vcg::vertex::Coord3f, vcg::vertex::Normal3f, vcg::vertex::BitFlags >{}; |
|
class MyFace : public vcg::Face< MyUsedTypes, vcg::face::FFAdj, vcg::face::Normal3f, vcg::face::VertexRef, vcg::face::BitFlags > {}; |
|
class MyEdge : public vcg::Edge<MyUsedTypes>{}; |
|
class MyMesh : public vcg::tri::TriMesh< std::vector<MyVertex>, std::vector<MyFace> , std::vector<MyEdge> > {}; |
|
|
|
int main( int argc, char **argv ) |
|
{ |
|
MyMesh boxMesh,torusMesh; |
|
vcg::Matrix33f IT; |
|
vcg::Point3f ITv; |
|
|
|
vcg::tri::Hexahedron(boxMesh); |
|
vcg::Matrix44f ScaleM,TransM; |
|
ScaleM.SetScale(1.0f, 2.0f, 5.0f); |
|
TransM.SetTranslate(2.0f,3.0f,4.0f); |
|
vcg::tri::UpdatePosition<MyMesh>::Matrix(boxMesh,ScaleM); |
|
vcg::tri::UpdatePosition<MyMesh>::Matrix(boxMesh,TransM); |
|
vcg::tri::Inertia<MyMesh> Ib(boxMesh); |
|
vcg::Point3f cc = Ib.CenterOfMass(); |
|
Ib.InertiaTensorEigen(IT,ITv); |
|
|
|
printf("Box of size 2,4,10, centered in (2,3,4)\n"); |
|
printf("Volume %f \n",Ib.Mass()); |
|
printf("CenterOfMass %f %f %f\n",cc[0],cc[1],cc[2]); |
|
printf("InertiaTensor Values %6.3f %6.3f %6.3f\n",ITv[0],ITv[1],ITv[2]); |
|
printf("InertiaTensor Matrix\n"); |
|
|
|
printf(" %6.3f %6.3f %6.3f\n",IT[0][0],IT[0][1],IT[0][2]); |
|
printf(" %6.3f %6.3f %6.3f\n",IT[1][0],IT[1][1],IT[1][2]); |
|
printf(" %6.3f %6.3f %6.3f\n",IT[2][0],IT[2][1],IT[2][2]); |
|
|
|
// Now we have a box with sides (h,w,d) 2,4,10, centered in (2,3,4) |
|
// Volume is 80 |
|
// inertia tensor should be: |
|
// I_h = 1/12 m *(w^2+d^2) = 1/12 * 80 * (16+100) = 773.33 |
|
// I_w = 1/12 m *(h^2+d^2) = 1/12 * 80 * (4+100) = 693.33 |
|
// I_d = 1/12 m *(h^2+w^2) = 1/12 * 80 * (4+16) = 133.33 |
|
|
|
|
|
vcg::tri::Torus(torusMesh,2,1,1024,512); |
|
vcg::tri::Inertia<MyMesh> It(torusMesh); |
|
cc = It.CenterOfMass(); |
|
It.InertiaTensorEigen(IT,ITv); |
|
|
|
printf("\nTorus of radius 2,1\n"); |
|
printf("Mass %f \n",It.Mass()); |
|
printf("CenterOfMass %f %f %f\n",cc[0],cc[1],cc[2]); |
|
printf("InertiaTensor Values %6.3f %6.3f %6.3f\n",ITv[0],ITv[1],ITv[2]); |
|
printf("InertiaTensor Matrix\n"); |
|
|
|
printf(" %6.3f %6.3f %6.3f\n",IT[0][0],IT[0][1],IT[0][2]); |
|
printf(" %6.3f %6.3f %6.3f\n",IT[1][0],IT[1][1],IT[1][2]); |
|
printf(" %6.3f %6.3f %6.3f\n",IT[2][0],IT[2][1],IT[2][2]); |
|
|
|
/* |
|
Now we have a torus with c = 2, a = 1 |
|
c = radius of the ring |
|
a = radius of the section |
|
|
|
Volume is: |
|
V= 2 PI^2 * a^2 * c = ~39.478 |
|
|
|
Inertia tensor should be: |
|
|
|
| ( 5/8 a^2 + 1/2 c^2 ) M 0 0 | |
|
| 0 ( 5/8 a^2 + 1/2 c^2 ) M 0 | = |
|
| 0 0 (3/4 a^2 + c^2) M | |
|
|
|
| ( 5/8+2 ) M 0 0 | | 103.630 0 0 | |
|
= | 0 ( 5/8+2 ) M 0 | = | 0 103.630 0 | |
|
| 0 0 (3/4+2) M | | 0 0 187.52 | |
|
|
|
*/ |
|
|
|
return 0; |
|
}
|
|
|