You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
514 lines
13 KiB
514 lines
13 KiB
/**************************************************************************** |
|
* VCGLib o o * |
|
* Visual and Computer Graphics Library o o * |
|
* _ O _ * |
|
* Copyright(C) 2004-2016 \/)\/ * |
|
* Visual Computing Lab /\/| * |
|
* ISTI - Italian National Research Council | * |
|
* \ * |
|
* All rights reserved. * |
|
* * |
|
* This program is free software; you can redistribute it and/or modify * |
|
* it under the terms of the GNU General Public License as published by * |
|
* the Free Software Foundation; either version 2 of the License, or * |
|
* (at your option) any later version. * |
|
* * |
|
* This program is distributed in the hope that it will be useful, * |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of * |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * |
|
* for more details. * |
|
* * |
|
****************************************************************************/ |
|
#ifndef __VCGLIB_SPATIAL_ITERATORS |
|
#define __VCGLIB_SPATIAL_ITERATORS |
|
|
|
#include <vector> |
|
#include <vcg/space/intersection3.h> |
|
#include <vcg/space/point3.h> |
|
#include <vcg/space/box3.h> |
|
#include <vcg/space/ray3.h> |
|
#include <vcg/math/base.h> |
|
#include <algorithm> |
|
#include <float.h> |
|
#include <limits> |
|
|
|
namespace vcg{ |
|
template <class Spatial_Idexing,class INTFUNCTOR,class TMARKER> |
|
class RayIterator |
|
{ |
|
public: |
|
typedef typename Spatial_Idexing::ScalarType ScalarType; |
|
typedef typename vcg::Ray3<ScalarType> RayType; |
|
typedef typename Spatial_Idexing::Box3x IndexingBoxType; |
|
protected: |
|
typedef typename Spatial_Idexing::ObjType ObjType; |
|
typedef typename vcg::Point3<ScalarType> CoordType; |
|
typedef typename Spatial_Idexing::CellIterator CellIterator; |
|
ScalarType max_dist; |
|
|
|
///control right bonding current cell index (only on initialization) |
|
void _ControlLimits() |
|
{ |
|
for (int i=0;i<3;i++) |
|
{ |
|
vcg::Point3i dim=Si.siz; |
|
if (CurrentCell.V(i)<0) |
|
CurrentCell.V(i) = 0; |
|
else |
|
if (CurrentCell.V(i)>=dim.V(i)) |
|
CurrentCell.V(i)=dim.V(i)-1; |
|
} |
|
} |
|
|
|
///find initial line parameters |
|
void _FindLinePar() |
|
{ |
|
/* Punti goal */ |
|
|
|
///da verificare se vanno oltre ai limiti |
|
vcg::Point3i ip; |
|
Si.PToIP(start,ip); |
|
Si.IPiToPf(ip,goal); |
|
for (int i=0;i<3;i++) |
|
if(r.Direction().V(i)>0.0) |
|
goal.V(i)+=Si.voxel.V(i); |
|
|
|
ScalarType gx=goal.X(); |
|
ScalarType gy=goal.Y(); |
|
ScalarType gz=goal.Z(); |
|
|
|
dist=(r.Origin()-goal).Norm(); |
|
|
|
const float LocalMaxScalar = (std::numeric_limits<float>::max)(); |
|
const float EPS = std::numeric_limits<float>::min(); |
|
|
|
/* Parametri della linea */ |
|
ScalarType tx,ty,tz; |
|
|
|
if( fabs(r.Direction().X())>EPS ) |
|
tx = (gx-r.Origin().X())/r.Direction().X(); |
|
else |
|
tx =LocalMaxScalar; |
|
|
|
if( fabs(r.Direction().Y())>EPS) |
|
ty = (gy-r.Origin().Y())/r.Direction().Y(); |
|
else |
|
ty =LocalMaxScalar; |
|
|
|
if( fabs(r.Direction().Z())>EPS ) |
|
tz = (gz-r.Origin().Z())/r.Direction().Z(); |
|
else |
|
tz =LocalMaxScalar; |
|
|
|
t=CoordType(tx,ty,tz); |
|
} |
|
|
|
bool _controlEnd() |
|
{ |
|
return (((CurrentCell.X()<0)||(CurrentCell.Y()<0)||(CurrentCell.Z()<0))|| |
|
((CurrentCell.X()>=Si.siz.X())||(CurrentCell.Y()>=Si.siz.Y())||(CurrentCell.Z()>=Si.siz.Z()))); |
|
} |
|
|
|
void _NextCell() |
|
{ |
|
assert(!end); |
|
vcg::Box3<ScalarType> bb_current; |
|
|
|
Si.IPiToPf(CurrentCell,bb_current.min); |
|
Si.IPiToPf(CurrentCell+vcg::Point3i(1,1,1),bb_current.max); |
|
|
|
CoordType inters; |
|
IntersectionRayBox(bb_current,r,inters); |
|
ScalarType testmax_dist=(inters-r.Origin()).Norm(); |
|
|
|
if (testmax_dist>max_dist) |
|
end=true; |
|
else |
|
{ |
|
if( t.X()<t.Y() && t.X()<t.Z() ) |
|
{ |
|
if(r.Direction().X()<0.0) |
|
{goal.X() -= Si.voxel.X(); --CurrentCell.X();} |
|
else |
|
{goal.X() += Si.voxel.X(); ++CurrentCell.X();} |
|
t.X() = (goal.X()-r.Origin().X())/r.Direction().X(); |
|
} |
|
else if( t.Y()<t.Z() ){ |
|
if(r.Direction().Y()<0.0) |
|
{goal.Y() -= Si.voxel.Y(); --CurrentCell.Y();} |
|
else |
|
{goal.Y() += Si.voxel.Y(); ++CurrentCell.Y();} |
|
t.Y() = (goal.Y()-r.Origin().Y())/r.Direction().Y(); |
|
} else { |
|
if(r.Direction().Z()<0.0) |
|
{ goal.Z() -= Si.voxel.Z(); --CurrentCell.Z();} |
|
else |
|
{ goal.Z() += Si.voxel.Z(); ++CurrentCell.Z();} |
|
t.Z() = (goal.Z()-r.Origin().Z())/r.Direction().Z(); |
|
} |
|
|
|
dist=(r.Origin()-goal).Norm(); |
|
end=_controlEnd(); |
|
} |
|
} |
|
|
|
public: |
|
|
|
|
|
///contructor |
|
RayIterator(Spatial_Idexing &_Si, |
|
INTFUNCTOR & _int_funct |
|
,const ScalarType &_max_dist) |
|
:Si(_Si),int_funct(_int_funct) |
|
{ |
|
max_dist=_max_dist; |
|
}; |
|
|
|
void SetMarker(TMARKER _tm) |
|
{ |
|
tm=_tm; |
|
} |
|
|
|
void Init(const RayType _r) |
|
{ |
|
r=_r; |
|
end=false; |
|
tm.UnMarkAll(); |
|
Elems.clear(); |
|
//CoordType ip; |
|
//control if intersect the bounding box of the mesh |
|
if (Si.bbox.IsIn(r.Origin())) |
|
start=r.Origin(); |
|
else |
|
if (!(vcg::IntersectionRayBox<ScalarType>(Si.bbox,r,start))){ |
|
end=true; |
|
return; |
|
} |
|
Si.PToIP(start,CurrentCell); |
|
_ControlLimits(); |
|
_FindLinePar(); |
|
//go to first intersection |
|
while ((!End())&& Refresh()) |
|
_NextCell(); |
|
|
|
} |
|
|
|
bool End() |
|
{return end;} |
|
|
|
|
|
///refresh current cell intersection , return false if there are |
|
///at lest 1 intersection |
|
bool Refresh() |
|
{ |
|
//Elems.clear(); |
|
|
|
typename Spatial_Idexing::CellIterator first,last,l; |
|
|
|
///take first, last iterators to elements in the cell |
|
Si.Grid(CurrentCell.X(),CurrentCell.Y(),CurrentCell.Z(),first,last); |
|
for(l=first;l!=last;++l) |
|
{ |
|
ObjType* elem=&(*(*l)); |
|
ScalarType t; |
|
CoordType Int; |
|
if((!elem->IsD())&&(!tm.IsMarked(elem))&&(int_funct((**l),r,t))&&(t<=max_dist)) |
|
{ |
|
Int=r.Origin()+r.Direction()*t; |
|
Elems.push_back(Entry_Type(elem,t,Int)); |
|
tm.Mark(elem); |
|
} |
|
} |
|
////then control if there are more than 1 element |
|
std::sort(Elems.begin(),Elems.end()); |
|
CurrentElem=Elems.rbegin(); |
|
|
|
return((Elems.size()==0)||(Dist()>dist)); |
|
} |
|
|
|
void operator ++() |
|
{ |
|
if (!Elems.empty()) Elems.pop_back(); |
|
|
|
CurrentElem = Elems.rbegin(); |
|
|
|
if (Dist()>dist) |
|
{ |
|
if (!End()) |
|
{ |
|
_NextCell(); |
|
while ((!End())&&Refresh()) |
|
_NextCell(); |
|
} |
|
} |
|
} |
|
|
|
ObjType &operator *(){return *((*CurrentElem).elem);} |
|
|
|
CoordType IntPoint() |
|
{return ((*CurrentElem).intersection);} |
|
|
|
ScalarType Dist() |
|
{ |
|
if (Elems.size()>0) |
|
return ((*CurrentElem).dist); |
|
else |
|
return ((ScalarType)FLT_MAX); |
|
} |
|
|
|
///set the current spatial indexing structure used |
|
void SetIndexStructure(Spatial_Idexing &_Si) |
|
{Si=_Si;} |
|
|
|
|
|
|
|
protected: |
|
|
|
///structure that mantain for the current cell pre-calculated data |
|
struct Entry_Type |
|
{ |
|
public: |
|
|
|
Entry_Type(ObjType* _elem,ScalarType _dist,CoordType _intersection) |
|
{ |
|
elem=_elem; |
|
dist=_dist; |
|
intersection=_intersection; |
|
} |
|
inline bool operator < ( const Entry_Type & l ) const{return (dist > l.dist); } |
|
ObjType* elem; |
|
ScalarType dist; |
|
CoordType intersection; |
|
}; |
|
|
|
RayType r; //ray to find intersections |
|
Spatial_Idexing &Si; //reference to spatial index algorithm |
|
bool end; //true if the scan is terminated |
|
INTFUNCTOR &int_funct; |
|
TMARKER tm; |
|
|
|
std::vector<Entry_Type> Elems; //element loaded from curren cell |
|
typedef typename std::vector<Entry_Type>::reverse_iterator ElemIterator; |
|
ElemIterator CurrentElem; //iterator to current element |
|
|
|
vcg::Point3i CurrentCell; //current cell |
|
|
|
//used for raterization |
|
CoordType start; |
|
CoordType goal; |
|
ScalarType dist; |
|
CoordType t; |
|
|
|
}; |
|
|
|
|
|
template <class Spatial_Idexing,class DISTFUNCTOR,class TMARKER> |
|
class ClosestIterator |
|
{ |
|
typedef typename Spatial_Idexing::ObjType ObjType; |
|
typedef typename Spatial_Idexing::ScalarType ScalarType; |
|
typedef typename vcg::Point3<ScalarType> CoordType; |
|
typedef typename Spatial_Idexing::CellIterator CellIterator; |
|
|
|
|
|
|
|
///control the end of scanning |
|
bool _EndGrid() |
|
{ |
|
if ((explored.min==vcg::Point3i(0,0,0))&&(explored.max==Si.siz)) |
|
end =true; |
|
return end; |
|
} |
|
|
|
void _UpdateRadius() |
|
{ |
|
if (radius>=max_dist) |
|
end=true; |
|
|
|
radius+=step_size; |
|
//control bounds |
|
if (radius>max_dist) |
|
radius=max_dist; |
|
} |
|
|
|
///add cell to the curren set of explored cells |
|
bool _NextShell() |
|
{ |
|
|
|
//then expand the box |
|
explored=to_explore; |
|
_UpdateRadius(); |
|
Box3<ScalarType> b3d(p,radius); |
|
Si.BoxToIBox(b3d,to_explore); |
|
Box3i ibox(Point3i(0,0,0),Si.siz-Point3i(1,1,1)); |
|
to_explore.Intersect(ibox); |
|
if (!to_explore.IsNull()) |
|
{ |
|
assert(!( to_explore.min.X()<0 || to_explore.max.X()>=Si.siz[0] || |
|
to_explore.min.Y()<0 || to_explore.max.Y()>=Si.siz[1] || to_explore.min.Z()<0 |
|
|| to_explore.max.Z()>=Si.siz[2] )); |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
|
|
|
|
public: |
|
|
|
///contructor |
|
ClosestIterator(Spatial_Idexing &_Si,DISTFUNCTOR _dist_funct):Si(_Si),dist_funct(_dist_funct){} |
|
|
|
///set the current spatial indexing structure used |
|
void SetIndexStructure(Spatial_Idexing &_Si) |
|
{Si=_Si;} |
|
|
|
void SetMarker(TMARKER _tm) |
|
{ |
|
tm=_tm; |
|
} |
|
|
|
///initialize the Iterator |
|
void Init(CoordType _p,const ScalarType &_max_dist) |
|
{ |
|
explored.SetNull(); |
|
to_explore.SetNull(); |
|
p=_p; |
|
max_dist=_max_dist; |
|
Elems.clear(); |
|
end=false; |
|
tm.UnMarkAll(); |
|
//step_size=Si.voxel.X(); |
|
step_size=Si.voxel.Norm(); |
|
radius=0; |
|
|
|
///inflate the bbox until find a valid bbox |
|
while ((!_NextShell())&&(!End())) {} |
|
|
|
while ((!End())&& Refresh()&&(!_EndGrid())) |
|
_NextShell(); |
|
} |
|
|
|
//return true if the scan is complete |
|
bool End() |
|
{return end;} |
|
|
|
///refresh Object found also considering current shere radius, |
|
//and object comes from previos that are already in the stack |
|
//return false if no elements find |
|
bool Refresh() |
|
{ |
|
int ix,iy,iz; |
|
for( iz = to_explore.min.Z();iz <= to_explore.max.Z(); ++iz) |
|
{ |
|
for(iy =to_explore.min.Y(); iy <=to_explore.max.Y(); ++iy) |
|
{ |
|
for(ix =to_explore.min.X(); ix <= to_explore.max.X();++ix) |
|
{ |
|
// this test is to avoid to re-process already analyzed cells. |
|
if((explored.IsNull())|| |
|
(ix<explored.min[0] || ix>explored.max[0] || |
|
iy<explored.min[1] || iy>explored.max[1] || |
|
iz<explored.min[2] || iz>explored.max[2] )) |
|
{ |
|
typename Spatial_Idexing::CellIterator first,last,l; |
|
|
|
Si.Grid(ix,iy,iz,first,last); |
|
for(l=first;l!=last;++l) |
|
{ |
|
ObjType *elem=&(**l); |
|
if (!tm.IsMarked(elem)) |
|
{ |
|
|
|
CoordType nearest; |
|
ScalarType dist=max_dist; |
|
if (dist_funct((**l),p,dist,nearest)) |
|
Elems.push_back(Entry_Type(elem,fabs(dist),nearest)); |
|
tm.Mark(elem); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
////sort the elements in Elems and take a iterator to the last one |
|
std::sort(Elems.begin(),Elems.end()); |
|
CurrentElem=Elems.rbegin(); |
|
|
|
return((Elems.size()==0)||(Dist()>radius)); |
|
} |
|
|
|
bool ToUpdate() |
|
{return ((Elems.size()==0)||(Dist()>radius));} |
|
|
|
void operator ++() |
|
{ |
|
if (!Elems.empty()) Elems.pop_back(); |
|
|
|
CurrentElem = Elems.rbegin(); |
|
|
|
if ((!End())&& ToUpdate()) |
|
do{_NextShell();} |
|
while (Refresh()&&(!_EndGrid())); |
|
} |
|
|
|
ObjType &operator *(){return *((*CurrentElem).elem);} |
|
|
|
//return distance of the element form the point if no element |
|
//are in the vector then return max dinstance |
|
ScalarType Dist() |
|
{ |
|
if (Elems.size()>0) |
|
return ((*CurrentElem).dist); |
|
else |
|
return ((ScalarType)FLT_MAX); |
|
} |
|
|
|
CoordType NearestPoint() |
|
{return ((*CurrentElem).intersection);} |
|
|
|
protected: |
|
|
|
///structure that mantain for the current cell pre-calculated data |
|
struct Entry_Type |
|
{ |
|
public: |
|
|
|
Entry_Type(ObjType* _elem,ScalarType _dist,CoordType _intersection) |
|
{ |
|
elem=_elem; |
|
dist=_dist; |
|
intersection=_intersection; |
|
} |
|
|
|
inline bool operator < ( const Entry_Type & l ) const{return (dist > l.dist); } |
|
|
|
inline bool operator == ( const Entry_Type & l ) const{return (elem == l.elem); } |
|
|
|
ObjType* elem; |
|
ScalarType dist; |
|
CoordType intersection; |
|
}; |
|
|
|
CoordType p; //initial point |
|
Spatial_Idexing &Si; //reference to spatial index algorithm |
|
bool end; //true if the scan is terminated |
|
ScalarType max_dist; //max distance when the scan terminate |
|
vcg::Box3i explored; //current bounding box explored |
|
vcg::Box3i to_explore; //current bounding box explored |
|
ScalarType radius; //curret radius for sphere expansion |
|
ScalarType step_size; //radius step |
|
std::vector<Entry_Type> Elems; //element loaded from the current sphere |
|
|
|
DISTFUNCTOR dist_funct; |
|
TMARKER tm; |
|
|
|
typedef typename std::vector<Entry_Type>::reverse_iterator ElemIterator; |
|
ElemIterator CurrentElem; //iterator to current element |
|
|
|
}; |
|
} |
|
|
|
#endif
|
|
|