You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
411 lines
11 KiB
411 lines
11 KiB
/**************************************************************************** |
|
* VCGLib o o * |
|
* Visual and Computer Graphics Library o o * |
|
* _ O _ * |
|
* Copyright(C) 2004-2016 \/)\/ * |
|
* Visual Computing Lab /\/| * |
|
* ISTI - Italian National Research Council | * |
|
* \ * |
|
* All rights reserved. * |
|
* * |
|
* This program is free software; you can redistribute it and/or modify * |
|
* it under the terms of the GNU General Public License as published by * |
|
* the Free Software Foundation; either version 2 of the License, or * |
|
* (at your option) any later version. * |
|
* * |
|
* This program is distributed in the hope that it will be useful, * |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of * |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * |
|
* for more details. * |
|
* * |
|
****************************************************************************/ |
|
#ifndef __VCGLIB_POINT4 |
|
#define __VCGLIB_POINT4 |
|
#include <assert.h> |
|
|
|
#include <vcg/math/base.h> |
|
|
|
namespace vcg { |
|
/** \addtogroup space */ |
|
/*@{*/ |
|
/** |
|
The templated class for representing a point in 4D space. |
|
The class is templated over the ScalarType class that is used to represent coordinates. |
|
All the usual operator (* + - ...) are defined. |
|
*/ |
|
|
|
template <class T> class Point4 |
|
{ |
|
public: |
|
/// The only data member. Hidden to user. |
|
T _v[4]; |
|
|
|
public: |
|
typedef T ScalarType; |
|
enum {Dimension = 4}; |
|
|
|
//@{ |
|
|
|
/** @name Standard Constructors and Initializers |
|
No casting operators have been introduced to avoid automatic unattended (and costly) conversion between different point types |
|
**/ |
|
|
|
inline Point4 () { } |
|
inline Point4 ( const T nx, const T ny, const T nz , const T nw ) |
|
{ |
|
_v[0] = nx; _v[1] = ny; _v[2] = nz; _v[3] = nw; |
|
} |
|
inline Point4 ( const T p[4] ) |
|
{ |
|
_v[0] = p[0]; _v[1]= p[1]; _v[2] = p[2]; _v[3]= p[3]; |
|
} |
|
|
|
inline void SetZero() |
|
{ |
|
_v[0] = _v[1] = _v[2] = _v[3]= 0; |
|
} |
|
template <class Q> |
|
/// importer from different Point4 types |
|
inline void Import( const Point4<Q> & b ) |
|
{ |
|
_v[0] = T(b[0]); |
|
_v[1] = T(b[1]); |
|
_v[2] = T(b[2]); |
|
_v[3] = T(b[3]); |
|
} |
|
template <class EigenVector> |
|
inline void FromEigenVector( const EigenVector & b ) |
|
{ |
|
_v[0] = T(b[0]); |
|
_v[1] = T(b[1]); |
|
_v[2] = T(b[2]); |
|
_v[3] = T(b[3]); |
|
} |
|
template <class EigenVector> |
|
inline void ToEigenVector( EigenVector & b ) const |
|
{ |
|
b[0]=_v[0]; |
|
b[1]=_v[1]; |
|
b[2]=_v[2]; |
|
b[3]=_v[3]; |
|
} |
|
template <class EigenVector> |
|
inline EigenVector ToEigenVector(void) const |
|
{ |
|
assert(EigenVector::RowsAtCompileTime == 4); |
|
EigenVector b; |
|
b << _v[0], _v[1], _v[2], _v[3]; |
|
return b; |
|
} |
|
/// constructor that imports from different Point4 types |
|
template <class Q> |
|
static inline Point4 Construct( const Point4<Q> & b ) |
|
{ |
|
return Point4(T(b[0]),T(b[1]),T(b[2]),T(b[3])); |
|
} |
|
|
|
static inline Point4 Zero(void) |
|
{ |
|
return Point4(0,0,0,0); |
|
} |
|
|
|
static inline Point4 One(void) |
|
{ |
|
return Point4(1,1,1,1); |
|
} |
|
|
|
//@} |
|
|
|
//@{ |
|
|
|
/** @name Data Access. |
|
access to data is done by overloading of [] or explicit naming of coords (x,y,z,w) |
|
**/ |
|
inline const T & operator [] ( const int i ) const |
|
{ |
|
assert(i>=0 && i<4); |
|
return _v[i]; |
|
} |
|
inline T & operator [] ( const int i ) |
|
{ |
|
assert(i>=0 && i<4); |
|
return _v[i]; |
|
} |
|
inline T &X() {return _v[0];} |
|
inline T &Y() {return _v[1];} |
|
inline T &Z() {return _v[2];} |
|
inline T &W() {return _v[3];} |
|
inline T const * V() const |
|
{ |
|
return _v; |
|
} |
|
inline T * V() |
|
{ |
|
return _v; |
|
} |
|
inline const T & V ( const int i ) const |
|
{ |
|
assert(i>=0 && i<4); |
|
return _v[i]; |
|
} |
|
inline T & V ( const int i ) |
|
{ |
|
assert(i>=0 && i<4); |
|
return _v[i]; |
|
} |
|
/// Padding function: give a default 0 value to all the elements that are not in the [0..2] range. |
|
/// Useful for managing in a consistent way object that could have point2 / point3 / point4 |
|
inline T Ext( const int i ) const |
|
{ |
|
if(i>=0 && i<=3) return _v[i]; |
|
else return 0; |
|
} |
|
//@} |
|
|
|
//@{ |
|
/** @name Linear operators and the likes |
|
**/ |
|
inline Point4 operator + ( const Point4 & p) const |
|
{ |
|
return Point4( _v[0]+p._v[0], _v[1]+p._v[1], _v[2]+p._v[2], _v[3]+p._v[3] ); |
|
} |
|
inline Point4 operator - ( const Point4 & p) const |
|
{ |
|
return Point4( _v[0]-p._v[0], _v[1]-p._v[1], _v[2]-p._v[2], _v[3]-p._v[3] ); |
|
} |
|
inline Point4 operator * ( const T s ) const |
|
{ |
|
return Point4( _v[0]*s, _v[1]*s, _v[2]*s, _v[3]*s ); |
|
} |
|
inline Point4 operator / ( const T s ) const |
|
{ |
|
return Point4( _v[0]/s, _v[1]/s, _v[2]/s, _v[3]/s ); |
|
} |
|
inline Point4 & operator += ( const Point4 & p) |
|
{ |
|
_v[0] += p._v[0]; _v[1] += p._v[1]; _v[2] += p._v[2]; _v[3] += p._v[3]; |
|
return *this; |
|
} |
|
inline Point4 & operator -= ( const Point4 & p ) |
|
{ |
|
_v[0] -= p._v[0]; _v[1] -= p._v[1]; _v[2] -= p._v[2]; _v[3] -= p._v[3]; |
|
return *this; |
|
} |
|
inline Point4 & operator *= ( const T s ) |
|
{ |
|
_v[0] *= s; _v[1] *= s; _v[2] *= s; _v[3] *= s; |
|
return *this; |
|
} |
|
inline Point4 & operator /= ( const T s ) |
|
{ |
|
_v[0] /= s; _v[1] /= s; _v[2] /= s; _v[3] /= s; |
|
return *this; |
|
} |
|
inline Point4 operator - () const |
|
{ |
|
return Point4( -_v[0], -_v[1], -_v[2], -_v[3] ); |
|
} |
|
inline Point4 VectProd ( const Point4 &x, const Point4 &z ) const |
|
{ |
|
Point4 res; |
|
const Point4 &y = *this; |
|
|
|
res[0] = y[1]*x[2]*z[3]-y[1]*x[3]*z[2]-x[1]*y[2]*z[3]+ |
|
x[1]*y[3]*z[2]+z[1]*y[2]*x[3]-z[1]*y[3]*x[2]; |
|
res[1] = y[0]*x[3]*z[2]-z[0]*y[2]*x[3]-y[0]*x[2]* |
|
z[3]+z[0]*y[3]*x[2]+x[0]*y[2]*z[3]-x[0]*y[3]*z[2]; |
|
res[2] = -y[0]*z[1]*x[3]+x[0]*z[1]*y[3]+y[0]*x[1]* |
|
z[3]-x[0]*y[1]*z[3]-z[0]*x[1]*y[3]+z[0]*y[1]*x[3]; |
|
res[3] = -z[0]*y[1]*x[2]-y[0]*x[1]*z[2]+x[0]*y[1]* |
|
z[2]+y[0]*z[1]*x[2]-x[0]*z[1]*y[2]+z[0]*x[1]*y[2]; |
|
return res; |
|
} |
|
//@} |
|
|
|
//@{ |
|
/** @name Norms and normalizations |
|
**/ |
|
/// Euclidian normal |
|
inline T Norm() const |
|
{ |
|
return math::Sqrt( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3] ); |
|
} |
|
/// Squared euclidian normal |
|
inline T SquaredNorm() const |
|
{ |
|
return _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3]; |
|
} |
|
/// Euclidian normalization |
|
inline Point4 & Normalize() |
|
{ |
|
T n = sqrt(_v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3] ); |
|
if(n>0.0) { _v[0] /= n; _v[1] /= n; _v[2] /= n; _v[3] /= n; } |
|
return *this; |
|
} |
|
|
|
inline void normalize(void) |
|
{ |
|
this->Normalize(); |
|
} |
|
|
|
inline Point4 normalized(void) const |
|
{ |
|
Point4<ScalarType> p = *this; |
|
p.normalize(); |
|
return p; |
|
} |
|
|
|
/// Homogeneous normalization (division by W) |
|
inline Point4 & HomoNormalize() |
|
{ |
|
if (_v[3]!=0.0) { _v[0] /= _v[3]; _v[1] /= _v[3]; _v[2] /= _v[3]; _v[3]=1.0; } |
|
return *this; |
|
}; |
|
|
|
inline void homoNormalize(void) |
|
{ |
|
this->HomoNormalize(); |
|
}; |
|
|
|
inline Point4 homoNormalized(void) const |
|
{ |
|
Point4<ScalarType> p = *this; |
|
p.homoNormalize(); |
|
return p; |
|
} |
|
|
|
/** @name Comparison operators (lexicographical order) |
|
**/ |
|
inline bool operator == ( const Point4& p ) const |
|
{ |
|
return _v[0]==p._v[0] && _v[1]==p._v[1] && _v[2]==p._v[2] && _v[3]==p._v[3]; |
|
} |
|
inline bool operator != ( const Point4 & p ) const |
|
{ |
|
return _v[0]!=p._v[0] || _v[1]!=p._v[1] || _v[2]!=p._v[2] || _v[3]!=p._v[3]; |
|
} |
|
inline bool operator < ( Point4 const & p ) const |
|
{ |
|
return (_v[3]!=p._v[3])?(_v[3]<p._v[3]): |
|
(_v[2]!=p._v[2])?(_v[2]<p._v[2]): |
|
(_v[1]!=p._v[1])?(_v[1]<p._v[1]): |
|
(_v[0]<p._v[0]); |
|
} |
|
inline bool operator > ( const Point4 & p ) const |
|
{ |
|
return (_v[3]!=p._v[3])?(_v[3]>p._v[3]): |
|
(_v[2]!=p._v[2])?(_v[2]>p._v[2]): |
|
(_v[1]!=p._v[1])?(_v[1]>p._v[1]): |
|
(_v[0]>p._v[0]); |
|
} |
|
inline bool operator <= ( const Point4 & p ) const |
|
{ |
|
return (_v[3]!=p._v[3])?(_v[3]< p._v[3]): |
|
(_v[2]!=p._v[2])?(_v[2]< p._v[2]): |
|
(_v[1]!=p._v[1])?(_v[1]< p._v[1]): |
|
(_v[0]<=p._v[0]); |
|
} |
|
inline bool operator >= ( const Point4 & p ) const |
|
{ |
|
return (_v[3]!=p._v[3])?(_v[3]> p._v[3]): |
|
(_v[2]!=p._v[2])?(_v[2]> p._v[2]): |
|
(_v[1]!=p._v[1])?(_v[1]> p._v[1]): |
|
(_v[0]>=p._v[0]); |
|
} |
|
//@} |
|
|
|
//@{ |
|
/** @name Dot products |
|
**/ |
|
|
|
// dot product |
|
inline T operator * ( const Point4 & p ) const |
|
{ |
|
return _v[0]*p._v[0] + _v[1]*p._v[1] + _v[2]*p._v[2] + _v[3]*p._v[3]; |
|
} |
|
inline T dot( const Point4 & p ) const { return (*this) * p; } |
|
inline Point4 operator ^ ( const Point4& /*p*/ ) const |
|
{ |
|
assert(0);// not defined by two vectors (only put for metaprogramming) |
|
return Point4(); |
|
} |
|
|
|
/// slower version, more stable (double precision only) |
|
T StableDot ( const Point4<T> & p ) const |
|
{ |
|
|
|
T k0=_v[0]*p._v[0], k1=_v[1]*p._v[1], k2=_v[2]*p._v[2], k3=_v[3]*p._v[3]; |
|
int exp0,exp1,exp2,exp3; |
|
|
|
frexp( double(k0), &exp0 );frexp( double(k1), &exp1 ); |
|
frexp( double(k2), &exp2 );frexp( double(k3), &exp3 ); |
|
|
|
if (exp0>exp1) { std::swap(k0,k1); std::swap(exp0,exp1); } |
|
if (exp2>exp3) { std::swap(k2,k3); std::swap(exp2,exp3); } |
|
if (exp0>exp2) { std::swap(k0,k2); std::swap(exp0,exp2); } |
|
if (exp1>exp3) { std::swap(k1,k3); std::swap(exp1,exp3); } |
|
if (exp2>exp3) { std::swap(k2,k3); std::swap(exp2,exp3); } |
|
|
|
return ( (k0 + k1) + k2 ) +k3; |
|
} |
|
//@} |
|
|
|
|
|
}; // end class definition |
|
|
|
template <class T> |
|
T Angle( const Point4<T>& p1, const Point4<T> & p2 ) |
|
{ |
|
T w = p1.Norm()*p2.Norm(); |
|
if(w==0) return -1; |
|
T t = (p1*p2)/w; |
|
if(t>1) t=1; |
|
return T( math::Acos(t) ); |
|
} |
|
|
|
template <class T> |
|
inline T Norm( const Point4<T> & p ) |
|
{ |
|
return p.Norm(); |
|
} |
|
|
|
template <class T> |
|
inline T SquaredNorm( const Point4<T> & p ) |
|
{ |
|
return p.SquaredNorm(); |
|
} |
|
|
|
template <class T> |
|
inline T Distance( const Point4<T> & p1, const Point4<T> & p2 ) |
|
{ |
|
return Norm(p1-p2); |
|
} |
|
|
|
template <class T> |
|
inline T SquaredDistance( const Point4<T> & p1, const Point4<T> & p2 ) |
|
{ |
|
return SquaredNorm(p1-p2); |
|
} |
|
|
|
/// slower version of dot product, more stable (double precision only) |
|
template<class T> |
|
double StableDot ( Point4<T> const & p0, Point4<T> const & p1 ) |
|
{ |
|
return p0.StableDot(p1); |
|
} |
|
|
|
template <typename Scalar> |
|
inline Point4<Scalar> operator*(const Scalar s, const Point4<Scalar> & p) |
|
{ |
|
return (p * s); |
|
} |
|
|
|
typedef Point4<short> Point4s; |
|
typedef Point4<int> Point4i; |
|
typedef Point4<float> Point4f; |
|
typedef Point4<double> Point4d; |
|
|
|
/*@}*/ |
|
} // end namespace |
|
#endif
|
|
|