You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2449 lines
86 KiB
2449 lines
86 KiB
/*************************************************************************** |
|
* VCGLib o o * |
|
* Visual and Computer Graphics Library o o * |
|
* _ O _ * |
|
* Copyright(C) 2004-2016 \/)\/ * |
|
* Visual Computing Lab /\/| * |
|
* ISTI - Italian National Research Council | * |
|
* \ * |
|
* All rights reserved. * |
|
* * |
|
* This program is free software; you can redistribute it and/or modify * |
|
* it under the terms of the GNU General Public License as published by * |
|
* the Free Software Foundation; either version 2 of the License, or * |
|
* (at your option) any later version. * |
|
* * |
|
* This program is distributed in the hope that it will be useful, * |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of * |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * |
|
* for more details. * |
|
* * |
|
****************************************************************************/ |
|
#ifndef __VCGLIB_TRIALLOCATOR |
|
#define __VCGLIB_TRIALLOCATOR |
|
|
|
#include <vector> |
|
#include <set> |
|
|
|
#include <vcg/container/simple_temporary_data.h> |
|
|
|
#include "used_types.h" |
|
|
|
namespace vcg { |
|
namespace tri { |
|
/** \addtogroup trimesh |
|
@{ |
|
*/ |
|
|
|
template<class MeshType> |
|
size_t Index(const MeshType &m, const typename MeshType::VertexType &v) {return &v-&*m.vert.begin();} |
|
template<class MeshType> |
|
size_t Index(const MeshType &m, const typename MeshType::FaceType &f) {return &f-&*m.face.begin();} |
|
template<class MeshType> |
|
size_t Index(const MeshType &m, const typename MeshType::EdgeType &e) {return &e-&*m.edge.begin();} |
|
template<class MeshType> |
|
size_t Index(const MeshType &m, const typename MeshType::HEdgeType &h) {return &h-&*m.hedge.begin();} |
|
template <class MeshType> |
|
size_t Index(const MeshType &m, const typename MeshType::TetraType &t) { return &t - &*m.tetra.begin(); } |
|
|
|
|
|
template<class MeshType> |
|
size_t Index(const MeshType &m, const typename MeshType::VertexType *vp) {return vp-&*m.vert.begin();} |
|
template<class MeshType> |
|
size_t Index(const MeshType &m, const typename MeshType::FaceType * fp) {return fp-&*m.face.begin();} |
|
template<class MeshType> |
|
size_t Index(const MeshType &m, const typename MeshType::EdgeType* e) {return e-&*m.edge.begin();} |
|
template<class MeshType> |
|
size_t Index(const MeshType &m, const typename MeshType::HEdgeType* h) {return h-&*m.hedge.begin();} |
|
template <class MeshType> |
|
size_t Index(const MeshType &m, const typename MeshType::TetraType *t) { return t - &*m.tetra.begin(); } |
|
|
|
|
|
template<class MeshType> |
|
bool IsValidPointer( MeshType & m, const typename MeshType::VertexType *vp) { return ( m.vert.size() > 0 && (vp >= &*m.vert.begin()) && (vp <= &m.vert.back()) ); } |
|
template<class MeshType> |
|
bool IsValidPointer(MeshType & m, const typename MeshType::EdgeType *ep) { return ( m.edge.size() > 0 && (ep >= &*m.edge.begin()) && (ep <= &m.edge.back())); } |
|
template<class MeshType> |
|
bool IsValidPointer(MeshType & m, const typename MeshType::FaceType *fp) { return ( m.face.size() > 0 && (fp >= &*m.face.begin()) && (fp <= &m.face.back())); } |
|
template<class MeshType> |
|
bool IsValidPointer(MeshType & m, const typename MeshType::HEdgeType *hp) { return ( m.hedge.size() > 0 && (hp >= &*m.hedge.begin()) && (hp <= &m.hedge.back())); } |
|
template <class MeshType> |
|
bool IsValidPointer(MeshType &m, const typename MeshType::TetraType *tp) { return (m.tetra.size() > 0 && (tp >= &*m.tetra.begin()) && (tp <= &m.tetra.back())); } |
|
|
|
template <class MeshType, class ATTR_CONT> |
|
void ReorderAttribute(ATTR_CONT &c, std::vector<size_t> & newVertIndex, MeshType & /* m */){ |
|
typename std::set<typename MeshType::PointerToAttribute>::iterator ai; |
|
for(ai = c.begin(); ai != c.end(); ++ai) |
|
((typename MeshType::PointerToAttribute)(*ai)).Reorder(newVertIndex); |
|
} |
|
|
|
template <class MeshType, class ATTR_CONT> |
|
void ResizeAttribute(ATTR_CONT &c, size_t sz, MeshType &/*m*/){ |
|
typename std::set<typename MeshType::PointerToAttribute>::iterator ai; |
|
for(ai =c.begin(); ai != c.end(); ++ai) |
|
((typename MeshType::PointerToAttribute)(*ai)).Resize(sz); |
|
} |
|
|
|
/*! |
|
\brief Class to safely add and delete elements in a mesh. |
|
|
|
Adding elements to a mesh, like faces and vertices can involve the reallocation of the vectors of the involved elements. |
|
This class provide the only safe methods to add elements. |
|
It also provide an accessory class vcg::tri::PointerUpdater for updating pointers to mesh elements that are kept by the user. |
|
*/ |
|
template <class MeshType> |
|
class Allocator |
|
{ |
|
|
|
public: |
|
typedef typename MeshType::VertexType VertexType; |
|
typedef typename MeshType::VertexPointer VertexPointer; |
|
typedef typename MeshType::VertexIterator VertexIterator; |
|
typedef typename MeshType::VertContainer VertContainer; |
|
|
|
typedef typename MeshType::EdgeType EdgeType; |
|
typedef typename MeshType::EdgePointer EdgePointer; |
|
typedef typename MeshType::EdgeIterator EdgeIterator; |
|
typedef typename MeshType::EdgeContainer EdgeContainer; |
|
|
|
typedef typename MeshType::FaceType FaceType; |
|
typedef typename MeshType::FacePointer FacePointer; |
|
typedef typename MeshType::FaceIterator FaceIterator; |
|
typedef typename MeshType::FaceContainer FaceContainer; |
|
|
|
typedef typename MeshType::HEdgeType HEdgeType; |
|
typedef typename MeshType::HEdgePointer HEdgePointer; |
|
typedef typename MeshType::HEdgeIterator HEdgeIterator; |
|
typedef typename MeshType::HEdgeContainer HEdgeContainer; |
|
|
|
typedef typename MeshType::TetraType TetraType; |
|
typedef typename MeshType::TetraPointer TetraPointer; |
|
typedef typename MeshType::TetraIterator TetraIterator; |
|
typedef typename MeshType::TetraContainer TetraContainer; |
|
|
|
typedef typename MeshType::CoordType CoordType; |
|
|
|
typedef typename MeshType::PointerToAttribute PointerToAttribute; |
|
typedef typename std::set<PointerToAttribute>::iterator AttrIterator; |
|
typedef typename std::set<PointerToAttribute>::const_iterator AttrConstIterator; |
|
typedef typename std::set<PointerToAttribute >::iterator PAIte; |
|
|
|
/*! |
|
\brief Accessory class to update pointers after eventual reallocation caused by adding elements. |
|
|
|
This class is used whenever you trigger some allocation operation that can cause the invalidation of the pointers to mesh elements. |
|
Typical situations are when you are allocating new vertexes, edges, halfedges of faces or when you compact |
|
their containers to get rid of deleted elements. |
|
This object allows you to update an invalidate pointer immediately after an action that invalidate it. |
|
\note It can also be used to prevent any update of the various internal pointers caused by an invalidation. |
|
This can be useful in case you are building all the internal connections by hand as it happens in a importer; |
|
\sa \ref allocation |
|
*/ |
|
template<class SimplexPointerType> |
|
class PointerUpdater |
|
{ |
|
public: |
|
PointerUpdater(void) : newBase(0), oldBase(0), newEnd(0), oldEnd(0), preventUpdateFlag(false) { ; } |
|
void Clear(){newBase=oldBase=newEnd=oldEnd=0; remap.clear();} |
|
/*! \brief Update a pointer to an element of a mesh after a reallocation |
|
|
|
The updating is correctly done only if this PointerUpdater have been passed to the corresponing allocation call. \sa \ref allocation |
|
*/ |
|
void Update(SimplexPointerType &vp) |
|
{ |
|
//if(vp>=newBase && vp<newEnd) return; |
|
if(vp<oldBase || vp>oldEnd) return; |
|
assert(vp>=oldBase); |
|
assert(vp<oldEnd); |
|
vp=newBase+(vp-oldBase); |
|
if(!remap.empty()) |
|
vp = newBase + remap[vp-newBase]; |
|
} |
|
/*! |
|
\brief return true if the allocation operation that initialized this PointerUpdater has caused a reallocation |
|
*/ |
|
bool NeedUpdate() {if((oldBase && newBase!=oldBase && !preventUpdateFlag) || !remap.empty()) return true; else return false;} |
|
|
|
SimplexPointerType newBase; |
|
SimplexPointerType oldBase; |
|
SimplexPointerType newEnd; |
|
SimplexPointerType oldEnd; |
|
std::vector<size_t> remap; // this vector keep the new position of an element. Uninitialized elements have max_int value to denote an element that has not to be remapped. |
|
|
|
bool preventUpdateFlag; /// when true no update is considered necessary. |
|
}; |
|
|
|
/* +++++++++++++++ Add Vertices ++++++++++++++++ */ |
|
|
|
/** \brief Add n vertices to the mesh. |
|
Function to add n vertices to the mesh. |
|
The elements are added always to the end of the vector. |
|
No attempt of reusing previously deleted element is done. |
|
\sa PointerUpdater |
|
\param m the mesh to be modified |
|
\param n the number of elements to be added |
|
\param pu a PointerUpdater initialized so that it can be used to update pointers to vertices that could have become invalid after this adding. |
|
\retval the iterator to the first element added. |
|
*/ |
|
static VertexIterator AddVertices(MeshType &m, size_t n, PointerUpdater<VertexPointer> &pu) |
|
{ |
|
VertexIterator last; |
|
if(n == 0) |
|
return m.vert.end(); |
|
pu.Clear(); |
|
|
|
if(m.vert.empty()) |
|
pu.oldBase=0; // if the vector is empty we cannot find the last valid element |
|
else { |
|
pu.oldBase=&*m.vert.begin(); |
|
pu.oldEnd=&m.vert.back()+1; |
|
} |
|
|
|
m.vert.resize(m.vert.size()+n); |
|
m.vn+=int(n); |
|
|
|
typename std::set<PointerToAttribute>::iterator ai; |
|
for(ai = m.vert_attr.begin(); ai != m.vert_attr.end(); ++ai) |
|
((PointerToAttribute)(*ai)).Resize(m.vert.size()); |
|
|
|
pu.newBase = &*m.vert.begin(); |
|
pu.newEnd = &m.vert.back()+1; |
|
if(pu.NeedUpdate()) |
|
{ |
|
for (FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi) |
|
if(!(*fi).IsD()) |
|
for(int i=0; i < (*fi).VN(); ++i) |
|
if ((*fi).cV(i)!=0) pu.Update((*fi).V(i)); |
|
|
|
for (EdgeIterator ei=m.edge.begin(); ei!=m.edge.end(); ++ei) |
|
if(!(*ei).IsD()) |
|
{ |
|
// if(HasEVAdjacency (m)) |
|
pu.Update((*ei).V(0)); |
|
pu.Update((*ei).V(1)); |
|
// if(HasEVAdjacency(m)) pu.Update((*ei).EVp()); |
|
} |
|
|
|
HEdgeIterator hi; |
|
for (hi=m.hedge.begin(); hi!=m.hedge.end(); ++hi) |
|
if(!(*hi).IsD()) |
|
{ |
|
if(HasHVAdjacency (m)) |
|
{ |
|
pu.Update((*hi).HVp()); |
|
} |
|
} |
|
|
|
for (TetraIterator ti = m.tetra.begin(); ti != m.tetra.end(); ++ti) |
|
if (!(*ti).IsD()) |
|
for (int i = 0; i < 4; ++i) |
|
if ((*ti).cV(i) != 0) |
|
pu.Update((*ti).V(i)); |
|
|
|
// e poiche' lo spazio e' cambiato si ricalcola anche last da zero |
|
} |
|
size_t siz=(size_t)(m.vert.size()-n); |
|
|
|
last = m.vert.begin(); |
|
advance(last,siz); |
|
|
|
return last;// deve restituire l'iteratore alla prima faccia aggiunta; |
|
} |
|
|
|
/** \brief Wrapper to AddVertices(); no PointerUpdater |
|
*/ |
|
static VertexIterator AddVertices(MeshType &m, size_t n) |
|
{ |
|
PointerUpdater<VertexPointer> pu; |
|
return AddVertices(m, n,pu); |
|
} |
|
|
|
/** \brief Wrapper to AddVertices() no PointerUpdater but a vector of VertexPointer pointers to be updated |
|
*/ |
|
static VertexIterator AddVertices(MeshType &m, size_t n, std::vector<VertexPointer *> &local_vec) |
|
{ |
|
PointerUpdater<VertexPointer> pu; |
|
VertexIterator v_ret = AddVertices(m, n,pu); |
|
|
|
typename std::vector<VertexPointer *>::iterator vi; |
|
for(vi=local_vec.begin();vi!=local_vec.end();++vi) |
|
pu.Update(**vi); |
|
return v_ret; |
|
} |
|
|
|
/** \brief Wrapper to AddVertices() to add an eigen matrix of (vn,3) |
|
* it returns the iterator to the first vertex added |
|
*/ |
|
static VertexIterator AddVertices(MeshType &m, const Eigen::MatrixXf &vm) |
|
{ |
|
VertexIterator v_ret = AddVertices(m, vm.rows()); |
|
VertexIterator v_start = v_ret; |
|
for(int i=0;i<vm.rows();++i) |
|
{ |
|
v_ret->P()[0]=vm(i,0); |
|
v_ret->P()[1]=vm(i,1); |
|
v_ret->P()[2]=vm(i,2); |
|
++v_ret; |
|
} |
|
return v_start; |
|
} |
|
|
|
|
|
/** \brief Wrapper to AddVertices() to add a single vertex with given coords |
|
*/ |
|
static VertexIterator AddVertex(MeshType &m, const CoordType &p) |
|
{ |
|
VertexIterator v_ret = AddVertices(m, 1); |
|
v_ret->P()=p; |
|
return v_ret; |
|
} |
|
|
|
/** \brief Wrapper to AddVertices() to add a single vertex with given coords and normal |
|
*/ |
|
static VertexIterator AddVertex(MeshType &m, const CoordType &p, const CoordType &n) |
|
{ |
|
VertexIterator v_ret = AddVertices(m, 1); |
|
v_ret->P()=p; |
|
v_ret->N()=n; |
|
return v_ret; |
|
} |
|
|
|
/** \brief Wrapper to AddVertices() to add a single vertex with given coords and color |
|
*/ |
|
static VertexIterator AddVertex(MeshType &m, const CoordType &p, const Color4b &c) |
|
{ |
|
VertexIterator v_ret = AddVertices(m, 1); |
|
v_ret->P()=p; |
|
v_ret->C()=c; |
|
return v_ret; |
|
} |
|
|
|
/* +++++++++++++++ Add Edges ++++++++++++++++ */ |
|
|
|
/** \brief Add n edges to the mesh. |
|
Function to add n edges to the mesh. |
|
The elements are added always to the end of the vector. No attempt of reusing previously deleted element is done. |
|
\sa PointerUpdater |
|
\param m the mesh to be modified |
|
\param n the number of elements to be added |
|
\param pu a PointerUpdater initialized so that it can be used to update pointers to edges that could have become invalid after this adding. |
|
\retval the iterator to the first element added. |
|
*/ |
|
static EdgeIterator AddEdges(MeshType &m, size_t n, PointerUpdater<EdgePointer> &pu) |
|
{ |
|
if(n == 0) return m.edge.end(); |
|
pu.Clear(); |
|
if(m.edge.empty()) pu.oldBase=0; // if the vector is empty we cannot find the last valid element |
|
else { |
|
pu.oldBase=&*m.edge.begin(); |
|
pu.oldEnd=&m.edge.back()+1; |
|
} |
|
|
|
m.edge.resize(m.edge.size()+n); |
|
m.en+=int(n); |
|
size_t siz=(size_t)(m.edge.size()-n); |
|
EdgeIterator firstNewEdge = m.edge.begin(); |
|
advance(firstNewEdge,siz); |
|
|
|
typename std::set<typename MeshType::PointerToAttribute>::iterator ai; |
|
for(ai = m.edge_attr.begin(); ai != m.edge_attr.end(); ++ai) |
|
((typename MeshType::PointerToAttribute)(*ai)).Resize(m.edge.size()); |
|
|
|
pu.newBase = &*m.edge.begin(); |
|
pu.newEnd = &m.edge.back()+1; |
|
if(pu.NeedUpdate()) |
|
{ |
|
if(HasFEAdjacency(m)) |
|
for (FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi){ |
|
if(!(*fi).IsD()) |
|
for(int i=0; i < (*fi).VN(); ++i) |
|
if ((*fi).cFEp(i)!=0) pu.Update((*fi).FEp(i)); |
|
} |
|
|
|
if(HasVEAdjacency(m)){ |
|
for (VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi) |
|
if(!(*vi).IsD()) |
|
if ((*vi).cVEp()!=0) pu.Update((*vi).VEp()); |
|
for(EdgeIterator ei=m.edge.begin();ei!=firstNewEdge;++ei) |
|
if(!(*ei).IsD()) |
|
{ |
|
if ((*ei).cVEp(0)!=0) pu.Update((*ei).VEp(0)); |
|
if ((*ei).cVEp(1)!=0) pu.Update((*ei).VEp(1)); |
|
} |
|
} |
|
|
|
if(HasHEAdjacency(m)) |
|
for (HEdgeIterator hi=m.hedge.begin(); hi!=m.hedge.end(); ++hi) |
|
if(!(*hi).IsD()) |
|
if ((*hi).cHEp()!=0) pu.Update((*hi).HEp()); |
|
} |
|
|
|
return firstNewEdge;// deve restituire l'iteratore alla prima faccia aggiunta; |
|
} |
|
|
|
/** Function to add a single edge to the mesh. and initializing it with two VertexPointer |
|
*/ |
|
static EdgeIterator AddEdge(MeshType &m, VertexPointer v0, VertexPointer v1) |
|
{ |
|
EdgeIterator ei= AddEdges(m, 1); |
|
ei->V(0)=v0; |
|
ei->V(1)=v1; |
|
return ei; |
|
} |
|
|
|
/** Function to add a single edge to the mesh. and initializing it with two indexes to the vertexes |
|
*/ |
|
static EdgeIterator AddEdge(MeshType &m, size_t v0, size_t v1) |
|
{ |
|
assert(v0!=v1); |
|
assert(v0>=0 && v0<m.vert.size()); |
|
assert(v1>=0 && v1<m.vert.size()); |
|
return AddEdge(m,&(m.vert[v0]),&(m.vert[v1])); |
|
} |
|
|
|
|
|
/** Function to add a face to the mesh and initializing it with the three given coords |
|
*/ |
|
static EdgeIterator AddEdge(MeshType &m, CoordType p0, CoordType p1) |
|
{ |
|
VertexIterator vi = AddVertices(m,2); |
|
EdgeIterator ei = AddEdges(m,1); |
|
vi->P()=p0; |
|
ei->V(0)=&*vi++; |
|
vi->P()=p1; |
|
ei->V(1)=&*vi++; |
|
return ei; |
|
} |
|
|
|
/** Function to add n edges to the mesh. |
|
First wrapper, with no parameters |
|
*/ |
|
static EdgeIterator AddEdges(MeshType &m, size_t n) |
|
{ |
|
PointerUpdater<EdgePointer> pu; |
|
return AddEdges(m, n,pu); |
|
} |
|
|
|
/** Function to add n edges to the mesh. |
|
Second Wrapper, with a vector of vertex pointers to be updated. |
|
*/ |
|
static EdgeIterator AddEdges(MeshType &m, size_t n, std::vector<EdgePointer*> &local_vec) |
|
{ |
|
PointerUpdater<EdgePointer> pu; |
|
EdgeIterator v_ret = AddEdges(m, n,pu); |
|
|
|
typename std::vector<EdgePointer *>::iterator ei; |
|
for(ei=local_vec.begin();ei!=local_vec.end();++ei) |
|
pu.Update(**ei); |
|
return v_ret; |
|
} |
|
|
|
/* +++++++++++++++ Add HalfEdges ++++++++++++++++ */ |
|
|
|
/** Function to add n halfedges to the mesh. The second parameter hold a vector of |
|
pointers to pointer to elements of the mesh that should be updated after a |
|
possible vector realloc. |
|
\sa PointerUpdater |
|
\param m the mesh to be modified |
|
\param n the number of elements to be added |
|
\param pu a PointerUpdater initialized so that it can be used to update pointers to edges that could have become invalid after this adding. |
|
\retval the iterator to the first element added. |
|
*/ |
|
static HEdgeIterator AddHEdges(MeshType &m, size_t n, PointerUpdater<HEdgePointer> &pu) |
|
{ |
|
HEdgeIterator last; |
|
if(n == 0) return m.hedge.end(); |
|
pu.Clear(); |
|
if(m.hedge.empty()) pu.oldBase=0; // if the vector is empty we cannot find the last valid element |
|
else { |
|
pu.oldBase=&*m.hedge.begin(); |
|
pu.oldEnd=&m.hedge.back()+1; |
|
} |
|
|
|
m.hedge.resize(m.hedge.size()+n); |
|
m.hn+=int(n); |
|
|
|
pu.newBase = &*m.hedge.begin(); |
|
pu.newEnd = &m.hedge.back()+1; |
|
|
|
if(pu.NeedUpdate()) |
|
{ |
|
if(HasFHAdjacency(m)) { |
|
for (FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi) |
|
{ |
|
if(!(*fi).IsD() && (*fi).FHp()) |
|
pu.Update((*fi).FHp()); |
|
} |
|
} |
|
if(HasVHAdjacency(m)) { |
|
for (VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi) |
|
if(!(*vi).IsD() && (*vi).cVHp()!=0) |
|
pu.Update((*vi).VHp()); |
|
} |
|
if(HasEHAdjacency(m)) { |
|
for (EdgeIterator ei=m.edge.begin(); ei!=m.edge.end(); ++ei) |
|
if(!(*ei).IsD() && (*ei).cEHp()!=0) |
|
pu.Update((*ei).EHp()); |
|
} |
|
|
|
int ii = 0; |
|
HEdgeIterator hi = m.hedge.begin(); |
|
while(ii < m.hn - int(n))// cycle on all the faces except the new ones |
|
{ |
|
if(!(*hi).IsD()) |
|
{ |
|
if(HasHNextAdjacency(m)) pu.Update((*hi).HNp()); |
|
if(HasHPrevAdjacency(m)) pu.Update((*hi).HPp()); |
|
if(HasHOppAdjacency(m)) pu.Update((*hi).HOp()); |
|
++ii; |
|
} |
|
++hi; |
|
} |
|
} |
|
size_t siz = (size_t)(m.hedge.size()-n); |
|
|
|
last = m.hedge.begin(); |
|
advance(last,siz); |
|
|
|
return last;// deve restituire l'iteratore alla prima faccia aggiunta; |
|
} |
|
|
|
/** Function to add n vertices to the mesh. |
|
First wrapper, with no parameters |
|
*/ |
|
static HEdgeIterator AddHEdges(MeshType &m, size_t n) |
|
{ |
|
PointerUpdater<HEdgePointer> pu; |
|
return AddHEdges(m, n,pu); |
|
} |
|
|
|
/** Function to add n vertices to the mesh. |
|
Second Wrapper, with a vector of vertex pointers to be updated. |
|
*/ |
|
static HEdgeIterator AddHEdges(MeshType &m, size_t n, std::vector<HEdgePointer*> &local_vec) |
|
{ |
|
PointerUpdater<HEdgePointer> pu; |
|
HEdgeIterator v_ret = AddHEdges(m, n,pu); |
|
|
|
typename std::vector<HEdgePointer *>::iterator ei; |
|
for(ei=local_vec.begin();ei!=local_vec.end();++ei) |
|
pu.Update(**ei); |
|
return v_ret; |
|
} |
|
|
|
/* +++++++++++++++ Add Faces ++++++++++++++++ */ |
|
|
|
/** Function to add a face to the mesh and initializing it with the three given VertexPointers |
|
*/ |
|
static FaceIterator AddFace(MeshType &m, VertexPointer v0, VertexPointer v1, VertexPointer v2) |
|
{ |
|
assert(m.vert.size()>0); |
|
assert((v0!=v1) && (v1!=v2) && (v0!=v2)); |
|
assert(v0>=&m.vert.front() && v0<=&m.vert.back()); |
|
assert(v1>=&m.vert.front() && v1<=&m.vert.back()); |
|
assert(v2>=&m.vert.front() && v2<=&m.vert.back()); |
|
PointerUpdater<FacePointer> pu; |
|
FaceIterator fi = AddFaces(m,1,pu); |
|
fi->Alloc(3); |
|
fi->V(0)=v0; |
|
fi->V(1)=v1; |
|
fi->V(2)=v2; |
|
return fi; |
|
} |
|
|
|
/** Function to add a face to the mesh and initializing it with three indexes |
|
*/ |
|
static FaceIterator AddFace(MeshType &m, size_t v0, size_t v1, size_t v2) |
|
{ |
|
assert((v0!=v1) && (v1!=v2) && (v0!=v2)); |
|
assert(v0>=0 && v0<m.vert.size()); |
|
assert(v1>=0 && v1<m.vert.size()); |
|
assert(v2>=0 && v2<m.vert.size()); |
|
return AddFace(m,&(m.vert[v0]),&(m.vert[v1]),&(m.vert[v2])); |
|
} |
|
/** Function to add a face to the mesh and initializing it with the three given coords |
|
*/ |
|
static FaceIterator AddFace(MeshType &m, CoordType p0, CoordType p1, CoordType p2) |
|
{ |
|
VertexIterator vi = AddVertices(m,3); |
|
FaceIterator fi = AddFaces(m,1); |
|
fi->Alloc(3); |
|
vi->P()=p0; |
|
fi->V(0)=&*vi++; |
|
vi->P()=p1; |
|
fi->V(1)=&*vi++; |
|
vi->P()=p2; |
|
fi->V(2)=&*vi; |
|
return fi; |
|
} |
|
|
|
/** Function to add a quad face to the mesh and initializing it with the four given VertexPointers |
|
* |
|
* Note that this function add a single polygonal face if the mesh has polygonal info or two tris with the corresponding faux bit set in the standard common case of a triangular mesh. |
|
*/ |
|
static FaceIterator AddQuadFace(MeshType &m, VertexPointer v0, VertexPointer v1, VertexPointer v2, VertexPointer v3) |
|
{ |
|
assert(m.vert.size()>0); |
|
assert(v0>=&m.vert.front() && v0<=&m.vert.back()); |
|
assert(v1>=&m.vert.front() && v1<=&m.vert.back()); |
|
assert(v2>=&m.vert.front() && v2<=&m.vert.back()); |
|
assert(v3>=&m.vert.front() && v3<=&m.vert.back()); |
|
PointerUpdater<FacePointer> pu; |
|
if(FaceType::HasPolyInfo()) |
|
{ |
|
FaceIterator fi = AddFaces(m,1,pu); |
|
fi->Alloc(4); |
|
fi->V(0)=v0; fi->V(1)=v1; |
|
fi->V(2)=v2; fi->V(3)=v3; |
|
return fi; |
|
} |
|
else |
|
{ |
|
FaceIterator fi = AddFaces(m,2,pu); |
|
fi->Alloc(3); fi->V(0)=v0; fi->V(1)=v1; fi->V(2)=v2; |
|
fi->SetF(2); |
|
++fi; |
|
fi->Alloc(3); fi->V(0)=v0; fi->V(1)=v2; fi->V(2)=v3; |
|
fi->SetF(0); |
|
return fi; |
|
} |
|
} |
|
/** \brief Function to add n faces to the mesh. |
|
First wrapper, with no parameters |
|
*/ |
|
static FaceIterator AddFaces(MeshType &m, size_t n) |
|
{ |
|
PointerUpdater<FacePointer> pu; |
|
return AddFaces(m,n,pu); |
|
} |
|
|
|
/** \brief Function to add n faces to the mesh. |
|
Second Wrapper, with a vector of face pointer to be updated. |
|
*/ |
|
static FaceIterator AddFaces(MeshType &m, size_t n,std::vector<FacePointer *> &local_vec) |
|
{ |
|
PointerUpdater<FacePointer> pu; |
|
FaceIterator f_ret= AddFaces(m,n,pu); |
|
|
|
typename std::vector<FacePointer *>::iterator fi; |
|
for(fi=local_vec.begin();fi!=local_vec.end();++fi) |
|
pu.Update(**fi); |
|
return f_ret; |
|
} |
|
|
|
/** \brief Function to add n faces to the mesh getting indexes |
|
* from a (fn, 3) eigen matrix of int . |
|
*/ |
|
static FaceIterator AddFaces(MeshType &m, const Eigen::MatrixXi &fm) |
|
{ |
|
PointerUpdater<FacePointer> pu; |
|
FaceIterator f_start = AddFaces(m,fm.rows(),pu); |
|
FaceIterator f_ret=f_start; |
|
for(int i=0;i<fm.rows();++i) |
|
{ |
|
f_start->V(0)= &m.vert[fm(i,0)]; |
|
f_start->V(1)= &m.vert[fm(i,1)]; |
|
f_start->V(2)= &m.vert[fm(i,2)]; |
|
++f_start; |
|
} |
|
return f_ret; |
|
} |
|
|
|
/** \brief Function to add n faces to the mesh. |
|
This is the only full featured function that is able to manage correctly |
|
all the official internal pointers of the mesh (like the VF and FF adjacency relations) |
|
\warning Calling this function can cause the invalidation of any not-managed FacePointer |
|
just because we resize the face vector. |
|
If you have such pointers you need to update them by mean of the PointerUpdater object. |
|
\sa PointerUpdater |
|
\param m the mesh to be modified |
|
\param n the number of elements to be added |
|
\param pu a PointerUpdater initialized so that it can be used to update pointers to edges that could have become invalid after this adding. |
|
\retval the iterator to the first element added. |
|
*/ |
|
static FaceIterator AddFaces(MeshType &m, size_t n, PointerUpdater<FacePointer> &pu) |
|
{ |
|
pu.Clear(); |
|
if(n == 0) return m.face.end(); |
|
if(!m.face.empty()) // if the vector is empty we cannot find the last valid element |
|
{ |
|
pu.oldBase=&*m.face.begin(); |
|
pu.oldEnd=&m.face.back()+1; |
|
} |
|
// The actual resize |
|
m.face.resize(m.face.size()+n); |
|
m.fn+=int(n); |
|
|
|
size_t siz=(size_t)(m.face.size()-n); |
|
FaceIterator firstNewFace = m.face.begin(); |
|
advance(firstNewFace,siz); |
|
|
|
typename std::set<PointerToAttribute>::iterator ai; |
|
for(ai = m.face_attr.begin(); ai != m.face_attr.end(); ++ai) |
|
((PointerToAttribute)(*ai)).Resize(m.face.size()); |
|
|
|
pu.newBase = &*m.face.begin(); |
|
pu.newEnd = &m.face.back()+1; |
|
|
|
if(pu.NeedUpdate()) |
|
{ |
|
if(HasFFAdjacency(m)) |
|
{ // cycle on all the faces except the new ones |
|
for(FaceIterator fi=m.face.begin();fi!=firstNewFace;++fi) |
|
if(!(*fi).IsD()) |
|
for(int i = 0; i < (*fi).VN(); ++i) |
|
if ((*fi).cFFp(i)!=0) pu.Update((*fi).FFp(i)); |
|
} |
|
|
|
if(HasPerVertexVFAdjacency(m) && HasPerFaceVFAdjacency(m)) |
|
{ // cycle on all the faces except the new ones |
|
for(FaceIterator fi=m.face.begin();fi!=firstNewFace;++fi) |
|
if(!(*fi).IsD()) |
|
for(int i = 0; i < (*fi).VN(); ++i) |
|
if ((*fi).cVFp(i)!=0) pu.Update((*fi).VFp(i)); |
|
|
|
for (VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi) |
|
if(!(*vi).IsD() && (*vi).cVFp()!=0) |
|
pu.Update((*vi).VFp()); |
|
} |
|
|
|
if(HasEFAdjacency(m)) |
|
{ |
|
for (EdgeIterator ei=m.edge.begin(); ei!=m.edge.end(); ++ei) |
|
if(!(*ei).IsD() && (*ei).cEFp()!=0) |
|
pu.Update((*ei).EFp()); |
|
} |
|
|
|
if(HasHFAdjacency(m)) |
|
{ |
|
for (HEdgeIterator hi=m.hedge.begin(); hi!=m.hedge.end(); ++hi) |
|
if(!(*hi).IsD() && (*hi).cHFp()!=0) |
|
pu.Update((*hi).HFp()); |
|
} |
|
} |
|
return firstNewFace; |
|
} |
|
|
|
//:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
|
//:::::::::::::::::TETRAS ADDER FUNCTIONS::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |
|
|
|
/** \brief Function to add n tetras to the mesh. |
|
This is the only full featured function that is able to manage correctly |
|
all the official internal pointers of the mesh (like the VT and TT adjacency relations) |
|
\warning Calling this function can cause the invalidation of any not-managed TetraPointer |
|
just because we resize the face vector. |
|
If you have such pointers you need to update them by mean of the PointerUpdater object. |
|
\sa PointerUpdater |
|
\param m the mesh to be modified |
|
\param n the number of elements to be added |
|
\param pu a PointerUpdater initialized so that it can be used to update pointers to tetras that could have become invalid after this adding. |
|
\retval the iterator to the first element added. |
|
*/ |
|
static TetraIterator AddTetras(MeshType &m, size_t n, PointerUpdater<TetraPointer> &pu) |
|
{ |
|
//nothing to do |
|
if (n == 0) |
|
return m.tetra.end(); |
|
|
|
//prepare the pointerupdater info |
|
pu.Clear(); |
|
if (m.tetra.empty()) |
|
pu.oldBase = 0; |
|
else |
|
{ |
|
pu.oldBase = &*m.tetra.begin(); |
|
pu.oldEnd = &m.tetra.back() + 1; |
|
} |
|
|
|
//resize the tetra list and update tetra count |
|
m.tetra.resize(m.tetra.size() + n); |
|
m.tn += n; |
|
|
|
//get the old size and advance to the first new tetrahedron position |
|
size_t oldSize = (size_t)(m.tetra.size() - n); |
|
|
|
TetraIterator firstNewTetra = m.tetra.begin(); |
|
advance(firstNewTetra, oldSize); |
|
|
|
//for each attribute make adapt the list size |
|
typename std::set<typename MeshType::PointerToAttribute>::iterator ai; |
|
for (ai = m.tetra_attr.begin(); ai != m.tetra_attr.end(); ++ai) |
|
((typename MeshType::PointerToAttribute)(*ai)).Resize(m.tetra.size()); |
|
|
|
//do the update |
|
pu.newBase = &*m.tetra.begin(); |
|
pu.newEnd = &m.tetra.back() + 1; |
|
if (pu.NeedUpdate()) |
|
{ |
|
if (HasVTAdjacency(m)) |
|
{ |
|
for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) |
|
if (!vi->IsD()) |
|
pu.Update(vi->VTp()); |
|
|
|
for (TetraIterator ti = m.tetra.begin(); ti != m.tetra.end(); ++ti) |
|
if (!ti->IsD()) |
|
{ |
|
pu.Update(ti->VTp(0)); |
|
pu.Update(ti->VTp(1)); |
|
pu.Update(ti->VTp(2)); |
|
pu.Update(ti->VTp(3)); |
|
} |
|
} |
|
|
|
//do edge and face adjacency |
|
if (HasTTAdjacency(m)) |
|
for (TetraIterator ti = m.tetra.begin(); ti != m.tetra.end(); ++ti) |
|
if (!ti->IsD()) |
|
{ |
|
pu.Update(ti->TTp(0)); |
|
pu.Update(ti->TTp(1)); |
|
pu.Update(ti->TTp(2)); |
|
pu.Update(ti->TTp(3)); |
|
} |
|
} |
|
|
|
return firstNewTetra; |
|
} |
|
|
|
//TODO: ADD 4 FACES then add tetra |
|
/** Function to add a face to the mesh and initializing it with the three given VertexPointers |
|
*/ |
|
static TetraIterator AddTetra(MeshType &m, VertexPointer v0, VertexPointer v1, VertexPointer v2, VertexPointer v3) |
|
{ |
|
assert(m.vert.size() > 0); |
|
assert((v0 != v1) && (v0 != v2) && (v0 != v3) && (v1 != v2) && (v1 != v3) && (v2 != v3)); |
|
assert(v0 >= &m.vert.front() && v0 <= &m.vert.back()); |
|
assert(v1 >= &m.vert.front() && v1 <= &m.vert.back()); |
|
assert(v2 >= &m.vert.front() && v2 <= &m.vert.back()); |
|
assert(v3 >= &m.vert.front() && v3 <= &m.vert.back()); |
|
|
|
// AddFace(m, v0, v1, v2); |
|
// AddFace(m, v0, v3, v1); |
|
// AddFace(m, v0, v2, v3); |
|
// AddFace(m, v1, v3, v2); |
|
|
|
PointerUpdater<TetraPointer> pu; |
|
TetraIterator ti = AddTetras(m, 1, pu); |
|
ti->V(0) = v0; |
|
ti->V(1) = v1; |
|
ti->V(2) = v2; |
|
ti->V(3) = v3; |
|
return ti; |
|
} |
|
|
|
/** Function to add a face to the mesh and initializing it with three indexes |
|
*/ |
|
static TetraIterator AddTetra(MeshType &m, const size_t v0, const size_t v1, const size_t v2, const size_t v3) |
|
{ |
|
assert(m.vert.size() > 0); |
|
assert((v0 != v1) && (v0 != v2) && (v0 != v3) && (v1 != v2) && (v1 != v3) && (v2 != v3)); |
|
assert(v0 >= 0 && v0 < m.vert.size()); |
|
assert(v1 >= 0 && v1 < m.vert.size()); |
|
assert(v2 >= 0 && v2 < m.vert.size()); |
|
assert(v3 >= 0 && v3 < m.vert.size()); |
|
|
|
return AddTetra(m, &(m.vert[v0]), &(m.vert[v1]), &(m.vert[v2]), &(m.vert[v3])); |
|
} |
|
/** Function to add a face to the mesh and initializing it with the three given coords |
|
*/ |
|
static TetraIterator AddTetra(MeshType &m, const CoordType & p0, const CoordType & p1, const CoordType & p2, const CoordType & p3) |
|
{ |
|
VertexIterator vi = AddVertices(m, 4); |
|
|
|
VertexPointer v0 = &*vi++; |
|
VertexPointer v1 = &*vi++; |
|
VertexPointer v2 = &*vi++; |
|
VertexPointer v3 = &*vi++; |
|
|
|
v0->P() = p0; |
|
v1->P() = p1; |
|
v2->P() = p2; |
|
v3->P() = p3; |
|
|
|
return AddTetra(m, v0, v1, v2, v3); |
|
} |
|
|
|
// //requires no duplicate vertices on faces you use |
|
// static TetraIterator AddTetra(MeshType &m, const FaceType & f0, const FaceType & f1, const FaceType & f2, const FaceType & f3) |
|
// { |
|
// assert(m.face.size() > 0); |
|
// assert((f0 != f1) && (f0 != f2) && (f0 != f3) && (f1 != f2) && (f1 != f3) && (f2 != f3)); |
|
// assert(f1 >= 0 && f1 < m.face.size()); |
|
// assert(f2 >= 0 && f2 < m.face.size()); |
|
// assert(f3 >= 0 && f3 < m.face.size()); |
|
// assert(f0 >= 0 && f0 < m.face.size()); |
|
// //TODO: decide if you want to address this like this |
|
// //ERROR: can't use position...so..could force to have no dup verts..and use pointers or avoid this kind of thing |
|
// assert(f0.V(0) == f1.V(0) && f0.V(0) == f2.V(0) && //v0 |
|
// f0.V(1) == f1.V(2) && f0.V(1) == f3.V(0) && //v1 |
|
// f0.V(2) == f2.V(1) && f0.V(2) == f3.V(2) && //v2 |
|
// f1.V(1) == f2.V(2) && f1.V(1) == f3.V(1) ) //v3 |
|
|
|
// //add a tetra...and set vertices correctly |
|
// PointerUpdater<TetraPointer> pu; |
|
// TetraIterator ti = AddTetras(m, 1, pu); |
|
// ti->V(0) = f0.V(0); |
|
// ti->V(1) = f0.V(1); |
|
// ti->V(2) = f0.V(2); |
|
// ti->V(3) = f1.V(1); |
|
|
|
// return ti; |
|
// } |
|
|
|
/** \brief Function to add n faces to the mesh. |
|
First wrapper, with no parameters |
|
*/ |
|
static TetraIterator AddTetras(MeshType &m, size_t n) |
|
{ |
|
PointerUpdater<TetraPointer> pu; |
|
return AddTetras(m, n, pu); |
|
} |
|
|
|
/** \brief Function to add n faces to the mesh. |
|
Second Wrapper, with a vector of face pointer to be updated. |
|
*/ |
|
static TetraIterator AddTetras(MeshType &m, size_t n, std::vector<TetraPointer *> &local_vec) |
|
{ |
|
PointerUpdater<TetraPointer> pu; |
|
TetraIterator t_ret = AddTetras(m, n, pu); |
|
|
|
typename std::vector<TetraPointer *>::iterator ti; |
|
for (ti = local_vec.begin(); ti != local_vec.end(); ++ti) |
|
pu.Update(**ti); |
|
return t_ret; |
|
} |
|
|
|
/* +++++++++++++++ Deleting ++++++++++++++++ */ |
|
|
|
/** Function to delete a face from the mesh. |
|
NOTE: THIS FUNCTION ALSO UPDATE FN |
|
*/ |
|
static void DeleteFace(MeshType &m, FaceType &f) |
|
{ |
|
assert(&f >= &m.face.front() && &f <= &m.face.back()); |
|
assert(!f.IsD()); |
|
f.Dealloc(); |
|
f.SetD(); |
|
--m.fn; |
|
} |
|
|
|
/** Function to delete a vertex from the mesh. |
|
NOTE: THIS FUNCTION ALSO UPDATE vn |
|
*/ |
|
static void DeleteVertex(MeshType &m, VertexType &v) |
|
{ |
|
assert(&v >= &m.vert.front() && &v <= &m.vert.back()); |
|
assert(!v.IsD()); |
|
v.SetD(); |
|
--m.vn; |
|
} |
|
|
|
/** Function to delete an edge from the mesh. |
|
NOTE: THIS FUNCTION ALSO UPDATE en |
|
*/ |
|
static void DeleteEdge(MeshType &m, EdgeType &e) |
|
{ |
|
assert(&e >= &m.edge.front() && &e <= &m.edge.back()); |
|
assert(!e.IsD()); |
|
e.SetD(); |
|
--m.en; |
|
} |
|
|
|
/** Function to delete a hedge from the mesh. |
|
NOTE: THIS FUNCTION ALSO UPDATE en |
|
*/ |
|
static void DeleteHEdge(MeshType &m, HEdgeType &h) |
|
{ |
|
assert(&h >= &m.hedge.front() && &h <= &m.hedge.back()); |
|
assert(!h.IsD()); |
|
h.SetD(); |
|
--m.hn; |
|
} |
|
|
|
/** Function to delete a tetra from the mesh. |
|
NOTE: THIS FUNCTION ALSO UPDATE tn |
|
*/ |
|
static void DeleteTetra(MeshType &m, TetraType &t) |
|
{ |
|
assert(&t >= &m.tetra.front() && &t <= &m.tetra.back()); |
|
assert(!t.IsD()); |
|
t.SetD(); |
|
--m.tn; |
|
} |
|
|
|
/* |
|
Function to rearrange the vertex vector according to a given index permutation |
|
the permutation is vector such that after calling this function |
|
|
|
m.vert[ newVertIndex[i] ] = m.vert[i]; |
|
|
|
e.g. newVertIndex[i] is the new index of the vertex i |
|
|
|
*/ |
|
static void PermutateVertexVector(MeshType &m, PointerUpdater<VertexPointer> &pu) |
|
{ |
|
if(m.vert.empty()) return; |
|
for(size_t i=0;i<m.vert.size();++i) |
|
{ |
|
if(pu.remap[i]<size_t(m.vn)) |
|
{ |
|
assert(!m.vert[i].IsD()); |
|
m.vert[ pu.remap [i] ].ImportData(m.vert[i]); |
|
if(HasVFAdjacency(m)) |
|
{ |
|
if (m.vert[i].IsVFInitialized()) |
|
{ |
|
m.vert[ pu.remap[i] ].VFp() = m.vert[i].cVFp(); |
|
m.vert[ pu.remap[i] ].VFi() = m.vert[i].cVFi(); |
|
} |
|
else m.vert [ pu.remap[i] ].VFClear(); |
|
} |
|
if(HasVEAdjacency(m)) |
|
{ |
|
if (m.vert[i].IsVEInitialized()) |
|
{ |
|
m.vert[ pu.remap[i] ].VEp() = m.vert[i].cVEp(); |
|
m.vert[ pu.remap[i] ].VEi() = m.vert[i].cVEi(); |
|
} |
|
else m.vert [ pu.remap[i] ].VEClear(); |
|
} |
|
if (HasVTAdjacency(m)) |
|
{ |
|
if (m.vert[i].IsVTInitialized()) |
|
{ |
|
m.vert[ pu.remap[i] ].VTp() = m.vert[i].cVTp(); |
|
m.vert[ pu.remap[i] ].VTi() = m.vert[i].cVTi(); |
|
} |
|
else m.vert[ pu.remap[i] ].VTClear(); |
|
} |
|
} |
|
} |
|
|
|
// reorder the optional atttributes in m.vert_attr to reflect the changes |
|
ReorderAttribute(m.vert_attr,pu.remap,m); |
|
|
|
// setup the pointer updater |
|
pu.oldBase = &m.vert[0]; |
|
pu.oldEnd = &m.vert.back()+1; |
|
|
|
// resize |
|
m.vert.resize(m.vn); |
|
|
|
// setup the pointer updater |
|
pu.newBase = (m.vert.empty())?0:&m.vert[0]; |
|
pu.newEnd = (m.vert.empty())?0:&m.vert.back()+1; |
|
|
|
// resize the optional atttributes in m.vert_attr to reflect the changes |
|
ResizeAttribute(m.vert_attr,m.vn,m); |
|
|
|
// Loop on the face to update the pointers FV relation (vertex refs) |
|
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) |
|
if(!(*fi).IsD()) |
|
for(int i=0;i<fi->VN();++i) |
|
{ |
|
size_t oldIndex = (*fi).V(i) - pu.oldBase; |
|
assert(pu.oldBase <= (*fi).V(i) && oldIndex < pu.remap.size()); |
|
(*fi).V(i) = pu.newBase+pu.remap[oldIndex]; |
|
} |
|
// Loop on the tetras to update the pointers TV relation (vertex refs) |
|
for(TetraIterator ti = m.tetra.begin(); ti != m.tetra.end(); ++ti) |
|
if(!(*ti).IsD()) |
|
for(int i = 0; i < 4; ++i) |
|
{ |
|
size_t oldIndex = (*ti).V(i) - pu.oldBase; |
|
assert(pu.oldBase <= (*ti).V(i) && oldIndex < pu.remap.size()); |
|
(*ti).V(i) = pu.newBase+pu.remap[oldIndex]; |
|
} |
|
// Loop on the edges to update the pointers EV relation (vertex refs) |
|
// if(HasEVAdjacency(m)) |
|
for(EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei) |
|
if(!(*ei).IsD()) |
|
{ |
|
pu.Update((*ei).V(0)); |
|
pu.Update((*ei).V(1)); |
|
} |
|
} |
|
|
|
static void CompactEveryVector(MeshType &m) |
|
{ |
|
CompactVertexVector(m); |
|
CompactEdgeVector(m); |
|
CompactFaceVector(m); |
|
CompactTetraVector(m); |
|
} |
|
|
|
/*! |
|
\brief Compact vector of vertices removing deleted elements. |
|
Deleted elements are put to the end of the vector and the vector is resized. Order between elements is preserved but not their position (hence the PointerUpdater) |
|
After calling this function the \c IsD() test in the scanning a vector, is no more necessary. |
|
|
|
\warning It should not be called when TemporaryData is active (but works correctly if attributes are present) |
|
*/ |
|
static void CompactVertexVector( MeshType &m, PointerUpdater<VertexPointer> &pu ) |
|
{ |
|
// If already compacted fast return please! |
|
if(m.vn==(int)m.vert.size()) return; |
|
|
|
// newVertIndex [ <old_vert_position> ] gives you the new position of the vertex in the vector; |
|
pu.remap.resize( m.vert.size(),std::numeric_limits<size_t>::max() ); |
|
|
|
size_t pos=0; |
|
size_t i=0; |
|
|
|
for(i=0;i<m.vert.size();++i) |
|
{ |
|
if(!m.vert[i].IsD()) |
|
{ |
|
pu.remap[i]=pos; |
|
++pos; |
|
} |
|
} |
|
assert((int)pos==m.vn); |
|
|
|
PermutateVertexVector(m, pu); |
|
} |
|
|
|
/*! \brief Wrapper without the PointerUpdater. */ |
|
static void CompactVertexVector( MeshType &m ) { |
|
PointerUpdater<VertexPointer> pu; |
|
CompactVertexVector(m,pu); |
|
} |
|
|
|
/*! |
|
\brief Compact vector of edges removing deleted elements. |
|
|
|
Deleted elements are put to the end of the vector and the vector is resized. Order between elements is preserved but not their position (hence the PointerUpdater) |
|
After calling this function the \c IsD() test in the scanning a vector, is no more necessary. |
|
|
|
\warning It should not be called when TemporaryData is active (but works correctly if attributes are present) |
|
*/ |
|
static void CompactEdgeVector( MeshType &m, PointerUpdater<EdgePointer> &pu ) |
|
{ |
|
// If already compacted fast return please! |
|
if(m.en==(int)m.edge.size()) return; |
|
|
|
// remap [ <old_edge_position> ] gives you the new position of the edge in the vector; |
|
pu.remap.resize( m.edge.size(),std::numeric_limits<size_t>::max() ); |
|
|
|
size_t pos=0; |
|
size_t i=0; |
|
|
|
for(i=0;i<m.edge.size();++i) |
|
{ |
|
if(!m.edge[i].IsD()) |
|
{ |
|
pu.remap[i]=pos; |
|
++pos; |
|
} |
|
} |
|
assert((int)pos==m.en); |
|
|
|
// the actual copying of the data. |
|
for(size_t i=0;i<m.edge.size();++i) |
|
{ |
|
if(pu.remap[i]<size_t(m.en)) // uninitialized entries in the remap vector has max_int value; |
|
{ |
|
assert(!m.edge[i].IsD()); |
|
m.edge[ pu.remap [i] ].ImportData(m.edge[i]); |
|
// copy the vertex reference (they are not data!) |
|
m.edge[ pu.remap[i] ].V(0) = m.edge[i].cV(0); |
|
m.edge[ pu.remap[i] ].V(1) = m.edge[i].cV(1); |
|
// Now just copy the adjacency pointers (without changing them, to be done later) |
|
if(HasVEAdjacency(m)) |
|
//if (m.edge[i].cVEp(0)!=0) |
|
{ |
|
m.edge[ pu.remap[i] ].VEp(0) = m.edge[i].cVEp(0); |
|
m.edge[ pu.remap[i] ].VEi(0) = m.edge[i].cVEi(0); |
|
m.edge[ pu.remap[i] ].VEp(1) = m.edge[i].cVEp(1); |
|
m.edge[ pu.remap[i] ].VEi(1) = m.edge[i].cVEi(1); |
|
} |
|
if(HasEEAdjacency(m)) |
|
// if (m.edge[i].cEEp(0)!=0) |
|
{ |
|
m.edge[ pu.remap[i] ].EEp(0) = m.edge[i].cEEp(0); |
|
m.edge[ pu.remap[i] ].EEi(0) = m.edge[i].cEEi(0); |
|
m.edge[ pu.remap[i] ].EEp(1) = m.edge[i].cEEp(1); |
|
m.edge[ pu.remap[i] ].EEi(1) = m.edge[i].cEEi(1); |
|
} |
|
if(HasEFAdjacency(m)) |
|
// if (m.edge[i].cEEp(0)!=0) |
|
{ |
|
m.edge[ pu.remap[i] ].EFp() = m.edge[i].cEFp(); |
|
m.edge[ pu.remap[i] ].EFi() = m.edge[i].cEFi(); |
|
m.edge[ pu.remap[i] ].EFp() = m.edge[i].cEFp(); |
|
m.edge[ pu.remap[i] ].EFi() = m.edge[i].cEFi(); |
|
} |
|
|
|
} |
|
} |
|
|
|
// reorder the optional attributes in m.vert_attr to reflect the changes |
|
ReorderAttribute(m.edge_attr, pu.remap,m); |
|
|
|
// setup the pointer updater |
|
pu.oldBase = &m.edge[0]; |
|
pu.oldEnd = &m.edge.back()+1; |
|
|
|
// THE resize |
|
m.edge.resize(m.en); |
|
|
|
// setup the pointer updater |
|
pu.newBase = (m.edge.empty())?0:&m.edge[0]; |
|
pu.newEnd = (m.edge.empty())?0:&m.edge.back()+1; |
|
|
|
// resize the optional atttributes in m.vert_attr to reflect the changes |
|
ResizeAttribute(m.edge_attr,m.en,m); |
|
|
|
// Loop on the vertices to update the pointers of VE relation |
|
if(HasVEAdjacency(m)) |
|
for (VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi) |
|
if(!(*vi).IsD()) pu.Update((*vi).VEp()); |
|
|
|
// Loop on the edges to update the pointers EE VE relation |
|
for(EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei) |
|
for(unsigned int i=0;i<2;++i) |
|
{ |
|
if(HasVEAdjacency(m)) |
|
pu.Update((*ei).VEp(i)); |
|
if(HasEEAdjacency(m)) |
|
pu.Update((*ei).EEp(i)); |
|
// if(HasEFAdjacency(m)) |
|
// pu.Update((*ei).EFp()); |
|
} |
|
} |
|
|
|
/*! \brief Wrapper without the PointerUpdater. */ |
|
static void CompactEdgeVector( MeshType &m ) { |
|
PointerUpdater<EdgePointer> pu; |
|
CompactEdgeVector(m,pu); |
|
} |
|
|
|
/*! |
|
\brief Compact face vector by removing deleted elements. |
|
|
|
Deleted elements are put to the end of the vector and the vector is resized. |
|
Order between elements is preserved, but not their position (hence the PointerUpdater) |
|
Immediately after calling this function the \c IsD() test during the scanning a vector, is no more necessary. |
|
\warning It should not be called when some TemporaryData is active (but works correctly if attributes are present) |
|
*/ |
|
static void CompactFaceVector( MeshType &m, PointerUpdater<FacePointer> &pu ) |
|
{ |
|
// If already compacted fast return please! |
|
if(m.fn==(int)m.face.size()) return; |
|
|
|
// newFaceIndex [ <old_face_position> ] gives you the new position of the face in the vector; |
|
pu.remap.resize( m.face.size(),std::numeric_limits<size_t>::max() ); |
|
|
|
size_t pos=0; |
|
for(size_t i=0;i<m.face.size();++i) |
|
{ |
|
if(!m.face[i].IsD()) |
|
{ |
|
if(pos!=i) |
|
{ |
|
m.face[pos].ImportData(m.face[i]); |
|
if(FaceType::HasPolyInfo()) |
|
{ |
|
m.face[pos].Dealloc(); |
|
m.face[pos].Alloc(m.face[i].VN()); |
|
} |
|
for(int j=0;j<m.face[i].VN();++j) |
|
m.face[pos].V(j) = m.face[i].V(j); |
|
|
|
if(HasVFAdjacency(m)) |
|
for(int j=0;j<m.face[i].VN();++j) |
|
{ |
|
if (m.face[i].IsVFInitialized(j)) { |
|
m.face[pos].VFp(j) = m.face[i].cVFp(j); |
|
m.face[pos].VFi(j) = m.face[i].cVFi(j); |
|
} |
|
else m.face[pos].VFClear(j); |
|
} |
|
if(HasFFAdjacency(m)) |
|
for(int j=0;j<m.face[i].VN();++j) |
|
{ |
|
m.face[pos].FFp(j) = m.face[i].cFFp(j); |
|
m.face[pos].FFi(j) = m.face[i].cFFi(j); |
|
} |
|
} |
|
pu.remap[i]=pos; |
|
++pos; |
|
} |
|
} |
|
assert((int)pos==m.fn); |
|
|
|
// reorder the optional atttributes in m.face_attr to reflect the changes |
|
ReorderAttribute(m.face_attr,pu.remap,m); |
|
|
|
FacePointer fbase=&m.face[0]; |
|
|
|
// Loop on the vertices to correct VF relation |
|
if(HasVFAdjacency(m)) |
|
{ |
|
for (VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi) |
|
if(!(*vi).IsD()) |
|
{ |
|
if ((*vi).IsVFInitialized() && (*vi).VFp()!=0 ) |
|
{ |
|
size_t oldIndex = (*vi).cVFp() - fbase; |
|
assert(fbase <= (*vi).cVFp() && oldIndex < pu.remap.size()); |
|
(*vi).VFp() = fbase+pu.remap[oldIndex]; |
|
} |
|
} |
|
} |
|
|
|
// Loop on the faces to correct VF and FF relations |
|
pu.oldBase = &m.face[0]; |
|
pu.oldEnd = &m.face.back()+1; |
|
for(size_t i=m.fn;i<m.face.size();++i) |
|
m.face[i].Dealloc(); |
|
m.face.resize(m.fn); |
|
pu.newBase = (m.face.empty())?0:&m.face[0]; |
|
pu.newEnd = (m.face.empty())?0:&m.face.back()+1; |
|
|
|
|
|
// resize the optional atttributes in m.face_attr to reflect the changes |
|
ResizeAttribute(m.face_attr,m.fn,m); |
|
|
|
// now we update the various (not null) face pointers (inside VF and FF relations) |
|
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) |
|
if(!(*fi).IsD()) |
|
{ |
|
if(HasVFAdjacency(m)) |
|
for(int i=0;i<(*fi).VN();++i) |
|
if ((*fi).IsVFInitialized(i) && (*fi).VFp(i)!=0 ) |
|
{ |
|
size_t oldIndex = (*fi).VFp(i) - fbase; |
|
assert(fbase <= (*fi).VFp(i) && oldIndex < pu.remap.size()); |
|
(*fi).VFp(i) = fbase+pu.remap[oldIndex]; |
|
} |
|
if(HasFFAdjacency(m)) |
|
for(int i=0;i<(*fi).VN();++i) |
|
if ((*fi).cFFp(i)!=0) |
|
{ |
|
size_t oldIndex = (*fi).FFp(i) - fbase; |
|
assert(fbase <= (*fi).FFp(i) && oldIndex < pu.remap.size()); |
|
(*fi).FFp(i) = fbase+pu.remap[oldIndex]; |
|
} |
|
} |
|
|
|
|
|
|
|
} |
|
|
|
/*! \brief Wrapper without the PointerUpdater. */ |
|
static void CompactFaceVector( MeshType &m ) { |
|
PointerUpdater<FacePointer> pu; |
|
CompactFaceVector(m,pu); |
|
} |
|
|
|
/*! |
|
\brief Compact tetra vector by removing deleted elements. |
|
|
|
Deleted elements are put to the end of the vector and the vector is resized. |
|
Order between elements is preserved, but not their position (hence the PointerUpdater) |
|
Immediately after calling this function the \c IsD() test during the scanning a vector, is no more necessary. |
|
\warning It should not be called when some TemporaryData is active (but works correctly if attributes are present) |
|
*/ |
|
static void CompactTetraVector(MeshType & m, PointerUpdater<TetraPointer> & pu) |
|
{ |
|
//nothing to do |
|
if (size_t(m.tn) == m.tetra.size()) |
|
return; |
|
|
|
//init the remap |
|
pu.remap.resize(m.tetra.size(), std::numeric_limits<size_t>::max()); |
|
|
|
//cycle over all the tetras, pos is the last not D() position, I is the index |
|
//when pos != i and !tetra[i].IsD() => we need to compact and update adj |
|
size_t pos = 0; |
|
for (size_t i = 0; i < m.tetra.size(); ++i) |
|
{ |
|
if (!m.tetra[i].IsD()) |
|
{ |
|
if (pos != i) |
|
{ |
|
//import data |
|
m.tetra[pos].ImportData(m.tetra[i]); |
|
//import vertex refs |
|
for (int j = 0; j < 4; ++j) |
|
m.tetra[pos].V(j) = m.tetra[i].V(j); |
|
//import VT adj |
|
if (HasVTAdjacency(m)) |
|
for (int j = 0; j < 4; ++j) |
|
{ |
|
if (m.tetra[i].IsVTInitialized(j)) |
|
{ |
|
m.tetra[pos].VTp(j) = m.tetra[i].VTp(j); |
|
m.tetra[pos].VTi(j) = m.tetra[i].VTi(j); |
|
} |
|
else |
|
m.tetra[pos].VTClear(j); |
|
} |
|
//import TT adj |
|
if (HasTTAdjacency(m)) |
|
for (int j = 0; j < 4; ++j) |
|
{ |
|
m.tetra[pos].TTp(j) = m.tetra[i].cTTp(j); |
|
m.tetra[pos].TTi(j) = m.tetra[i].cTTi(j); |
|
} |
|
} |
|
//update remapping and advance pos |
|
pu.remap[i] = pos; |
|
++pos; |
|
} |
|
} |
|
|
|
assert(size_t(m.tn) == pos); |
|
//reorder the optional attributes in m.tetra_attr |
|
ReorderAttribute(m.tetra_attr, pu.remap, m); |
|
// resize the optional atttributes in m.tetra_attr to reflect the changes |
|
ResizeAttribute(m.tetra_attr, m.tn, m); |
|
|
|
// Loop on the tetras to correct VT and TT relations |
|
pu.oldBase = &m.tetra[0]; |
|
pu.oldEnd = &m.tetra.back() + 1; |
|
|
|
m.tetra.resize(m.tn); |
|
pu.newBase = (m.tetra.empty()) ? 0 : &m.tetra[0]; |
|
pu.newEnd = (m.tetra.empty()) ? 0 : &m.tetra.back() + 1; |
|
|
|
TetraPointer tbase = &m.tetra[0]; |
|
|
|
//Loop on the vertices to correct VT relation (since we moved things around) |
|
if (HasVTAdjacency(m)) |
|
{ |
|
for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) |
|
if (!(*vi).IsD()) |
|
{ |
|
if ((*vi).IsVTInitialized() && (*vi).VTp() != 0) |
|
{ |
|
size_t oldIndex = (*vi).cVTp() - tbase; |
|
assert(tbase <= (*vi).cVTp() && oldIndex < pu.remap.size()); |
|
(*vi).VTp() = tbase + pu.remap[oldIndex]; |
|
} |
|
} |
|
} |
|
|
|
// Loop on the tetras to correct the VT and TT relations |
|
for (TetraIterator ti = m.tetra.begin(); ti != m.tetra.end(); ++ti) |
|
if (!(*ti).IsD()) |
|
{ |
|
//VT |
|
if (HasVTAdjacency(m)) |
|
for (int i = 0; i < 4; ++i) |
|
if ((*ti).IsVTInitialized(i) && (*ti).VTp(i) != 0) |
|
{ |
|
size_t oldIndex = (*ti).VTp(i) - tbase; |
|
assert(tbase <= (*ti).VTp(i) && oldIndex < pu.remap.size()); |
|
(*ti).VTp(i) = tbase + pu.remap[oldIndex]; |
|
} |
|
//TT |
|
if (HasTTAdjacency(m)) |
|
for (int i = 0; i < 4; ++i) |
|
if ((*ti).cTTp(i) != 0) |
|
{ |
|
size_t oldIndex = (*ti).TTp(i) - tbase; |
|
assert(tbase <= (*ti).TTp(i) && oldIndex < pu.remap.size()); |
|
(*ti).TTp(i) = tbase + pu.remap[oldIndex]; |
|
} |
|
} |
|
} |
|
|
|
/*! \brief Wrapper without the PointerUpdater. */ |
|
static void CompactTetraVector(MeshType &m) |
|
{ |
|
PointerUpdater<TetraPointer> pu; |
|
CompactTetraVector(m, pu); |
|
} |
|
|
|
|
|
public: |
|
|
|
/** |
|
* @brief Checks if a handle to a Per-Vertex Attribute is valid |
|
*/ |
|
template <class ATTR_TYPE> |
|
static |
|
bool IsValidHandle( const MeshType & m, const typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE> & a){ |
|
if(a._handle == nullptr) return false; |
|
for(AttrIterator i = m.vert_attr.begin(); i!=m.vert_attr.end();++i) |
|
if ( (*i).n_attr == a.n_attr ) return true; |
|
return false; |
|
} |
|
|
|
/** |
|
* @brief Checks if a const handle to a Per-Vertex Attribute is valid |
|
*/ |
|
template <class ATTR_TYPE> |
|
static |
|
bool IsValidHandle( const MeshType & m, const typename MeshType::template ConstPerVertexAttributeHandle<ATTR_TYPE> & a){ |
|
if(a._handle == nullptr) return false; |
|
for(AttrIterator i = m.vert_attr.begin(); i!=m.vert_attr.end();++i) |
|
if ( (*i).n_attr == a.n_attr ) return true; |
|
return false; |
|
} |
|
|
|
/*! \brief Add a Per-Vertex Attribute of the given ATTR_TYPE with the given name. |
|
|
|
No attribute with that name must exists (even of different type) |
|
*/ |
|
template <class ATTR_TYPE> |
|
static |
|
typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE> |
|
AddPerVertexAttribute( MeshType & m, std::string name){ |
|
PAIte i; |
|
PointerToAttribute h; |
|
h._name = name; |
|
if(!name.empty()){ |
|
i = m.vert_attr.find(h); |
|
assert(i ==m.vert_attr.end() );// an attribute with this name exists |
|
} |
|
|
|
h._sizeof = sizeof(ATTR_TYPE); |
|
h._padding = 0; |
|
h._handle = new SimpleTempData<VertContainer,ATTR_TYPE>(m.vert); |
|
h._type = typeid(ATTR_TYPE); |
|
m.attrn++; |
|
h.n_attr = m.attrn; |
|
std::pair < AttrIterator , bool> res = m.vert_attr.insert(h); |
|
return typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE>(res.first->_handle,res.first->n_attr ); |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE> |
|
AddPerVertexAttribute( MeshType & m){ |
|
return AddPerVertexAttribute<ATTR_TYPE>(m,std::string("")); |
|
} |
|
|
|
/*! \brief gives a handle to a per-vertex attribute with a given name and ATTR_TYPE |
|
\returns a valid handle. If the name is not empty and an attribute with that name and type exists returns a handle to it. |
|
Otherwise return a hanlde to a newly created. |
|
*/ |
|
template <class ATTR_TYPE> |
|
static |
|
typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE> |
|
GetPerVertexAttribute( MeshType & m, std::string name = std::string("")){ |
|
typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE> h; |
|
if(!name.empty()){ |
|
h = FindPerVertexAttribute<ATTR_TYPE>(m,name); |
|
if(IsValidHandle(m,h)) |
|
return h; |
|
} |
|
return AddPerVertexAttribute<ATTR_TYPE>(m,name); |
|
} |
|
|
|
/*! \brief gives a const handle to a per-vertex attribute with a given name and ATTR_TYPE |
|
\returns a valid handle. If the name is not empty and an attribute with that name and type exists returns a handle to it. |
|
Otherwise, returns an invalid handle (check it using IsValidHandle). |
|
*/ |
|
template <class ATTR_TYPE> |
|
static |
|
typename MeshType::template ConstPerVertexAttributeHandle<ATTR_TYPE> |
|
GetPerVertexAttribute( const MeshType & m, std::string name = std::string("")){ |
|
return FindPerVertexAttribute<ATTR_TYPE>(m,name); |
|
} |
|
|
|
/*! \brief Try to retrieve an handle to an attribute with a given name and ATTR_TYPE |
|
\returns a invalid handle if no attribute with that name and type exists. |
|
*/ |
|
template <class ATTR_TYPE> |
|
static typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE> |
|
FindPerVertexAttribute( MeshType & m, const std::string & name) |
|
{ |
|
assert(!name.empty()); |
|
PointerToAttribute h1; h1._name = name; |
|
typename std::set<PointerToAttribute > :: iterator i; |
|
|
|
i =m.vert_attr.find(h1); |
|
if(i!=m.vert_attr.end()) |
|
if((*i)._sizeof == sizeof(ATTR_TYPE) ){ |
|
if( (*i)._padding != 0 ){ |
|
PointerToAttribute attr = (*i); // copy the PointerToAttribute |
|
m.vert_attr.erase(i); // remove it from the set |
|
FixPaddedPerVertexAttribute<ATTR_TYPE>(m,attr); |
|
std::pair<AttrIterator,bool> new_i = m.vert_attr.insert(attr); // insert the modified PointerToAttribute |
|
assert(new_i.second); |
|
i = new_i.first; |
|
} |
|
return typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE>((*i)._handle,(*i).n_attr); |
|
} |
|
return typename MeshType:: template PerVertexAttributeHandle<ATTR_TYPE>(nullptr,0); |
|
} |
|
|
|
/** |
|
* @brief Try to retrieve a const handle to an attribute with a given name |
|
* and ATTR_TYPE, from the given const mesh. |
|
* If not found, an invalid handle will be returned. |
|
* Check it with the function IsValidHandle |
|
*/ |
|
template <class ATTR_TYPE> |
|
static typename MeshType::template ConstPerVertexAttributeHandle<ATTR_TYPE> |
|
FindPerVertexAttribute( const MeshType & m, const std::string & name) |
|
{ |
|
if(!name.empty()){ |
|
PointerToAttribute h1; h1._name = name; |
|
typename std::set<PointerToAttribute > :: iterator i; |
|
|
|
i =m.vert_attr.find(h1); |
|
if(i!=m.vert_attr.end()){ |
|
if((*i)._sizeof == sizeof(ATTR_TYPE) ){ |
|
return typename MeshType::template ConstPerVertexAttributeHandle<ATTR_TYPE>((*i)._handle,(*i).n_attr); |
|
} |
|
} |
|
} |
|
return typename MeshType:: template ConstPerVertexAttributeHandle<ATTR_TYPE>(nullptr,0); |
|
} |
|
|
|
/*! \brief query the mesh for all the attributes per vertex |
|
\returns the name of all attributes with a non-empy name. |
|
*/ |
|
template <class ATTR_TYPE> |
|
static void GetAllPerVertexAttribute(const MeshType & m, std::vector<std::string> &all){ |
|
all.clear(); |
|
typename std::set<PointerToAttribute > ::const_iterator i; |
|
for(i = m.vert_attr.begin(); i != m.vert_attr.end(); ++i ) |
|
if(!(*i)._name.empty()) |
|
{ |
|
typename MeshType:: template ConstPerVertexAttributeHandle<ATTR_TYPE> hh; |
|
hh = Allocator<MeshType>:: template FindPerVertexAttribute <ATTR_TYPE>(m,(*i)._name); |
|
if(IsValidHandle<ATTR_TYPE>(m,hh)) |
|
all.push_back((*i)._name); |
|
} |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static |
|
void |
|
ClearPerVertexAttribute( MeshType & m,typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE> & h, const ATTR_TYPE & initVal = ATTR_TYPE()){ |
|
typename std::set<PointerToAttribute > ::iterator i; |
|
for( i = m.vert_attr.begin(); i != m.vert_attr.end(); ++i) |
|
if( (*i)._handle == h._handle ){ |
|
for(typename MeshType::VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) |
|
h[vi] = initVal; |
|
return;} |
|
assert(0); |
|
} |
|
|
|
/*! \brief If the per-vertex attribute exists, delete it. |
|
*/ |
|
template <class ATTR_TYPE> |
|
static |
|
void |
|
DeletePerVertexAttribute( MeshType & m,typename MeshType::template PerVertexAttributeHandle<ATTR_TYPE> & h){ |
|
typename std::set<PointerToAttribute > ::iterator i; |
|
for( i = m.vert_attr.begin(); i != m.vert_attr.end(); ++i) |
|
if( (*i)._handle == h._handle ){ |
|
delete ((SimpleTempData<VertContainer,ATTR_TYPE>*)(*i)._handle); |
|
m.vert_attr.erase(i); |
|
return;} |
|
} |
|
|
|
// Generic DeleteAttribute. |
|
// It must not crash if you try to delete a non existing attribute, |
|
// because you do not have a way of asking for a handle of an attribute for which you do not know the type. |
|
static |
|
bool DeletePerVertexAttribute( MeshType & m, std::string name){ |
|
AttrIterator i; |
|
PointerToAttribute h1; h1._name = name; |
|
i = m.vert_attr.find(h1); |
|
if(i==m.vert_attr.end()) return false; |
|
delete ((SimpleTempDataBase*)(*i)._handle); |
|
m.vert_attr.erase(i); |
|
return true; |
|
} |
|
|
|
|
|
|
|
/// Per Edge Attributes |
|
template <class ATTR_TYPE> |
|
static |
|
bool IsValidHandle( const MeshType & m, const typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE> & a){ |
|
if(a._handle == nullptr) return false; |
|
for(AttrIterator i = m.edge_attr.begin(); i!=m.edge_attr.end();++i) |
|
if ( (*i).n_attr == a.n_attr ) return true; |
|
return false; |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static |
|
bool IsValidHandle( const MeshType & m, const typename MeshType::template ConstPerEdgeAttributeHandle<ATTR_TYPE> & a){ |
|
if(a._handle == nullptr) return false; |
|
for(AttrIterator i = m.edge_attr.begin(); i!=m.edge_attr.end();++i) |
|
if ( (*i).n_attr == a.n_attr ) return true; |
|
return false; |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static |
|
typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE> |
|
AddPerEdgeAttribute( MeshType & m, std::string name){ |
|
PAIte i; |
|
PointerToAttribute h; |
|
h._name = name; |
|
if(!name.empty()){ |
|
i = m.edge_attr.find(h); |
|
assert(i ==m.edge_attr.end() );// an attribute with this name exists |
|
} |
|
h._sizeof = sizeof(ATTR_TYPE); |
|
h._padding = 0; |
|
// h._typename = typeid(ATTR_TYPE).name(); |
|
h._handle = new SimpleTempData<EdgeContainer,ATTR_TYPE>(m.edge); |
|
h._type = typeid(ATTR_TYPE); |
|
m.attrn++; |
|
h.n_attr = m.attrn; |
|
std::pair < AttrIterator , bool> res = m.edge_attr.insert(h); |
|
return typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE>(res.first->_handle,res.first->n_attr); |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static |
|
typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE> |
|
AddPerEdgeAttribute( MeshType & m){ |
|
return AddPerEdgeAttribute<ATTR_TYPE>(m,std::string("")); |
|
} |
|
|
|
/*! \brief gives a handle to a per-edge attribute with a given name and ATTR_TYPE |
|
\returns a valid handle. If the name is not empty and an attribute with that name and type exists returns a handle to it. |
|
Otherwise return a hanlde to a newly created. |
|
*/ |
|
template <class ATTR_TYPE> |
|
static |
|
typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE> |
|
GetPerEdgeAttribute( MeshType & m, std::string name = std::string("")){ |
|
typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE> h; |
|
if(!name.empty()){ |
|
h = FindPerEdgeAttribute<ATTR_TYPE>(m,name); |
|
if(IsValidHandle(m,h)) |
|
return h; |
|
} |
|
return AddPerEdgeAttribute<ATTR_TYPE>(m,name); |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static |
|
typename MeshType::template ConstPerEdgeAttributeHandle<ATTR_TYPE> |
|
GetPerEdgeAttribute( const MeshType & m, std::string name = std::string("")){ |
|
return FindPerEdgeAttribute<ATTR_TYPE>(m,name); |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static |
|
typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE> |
|
FindPerEdgeAttribute( MeshType & m, const std::string & name){ |
|
assert(!name.empty()); |
|
PointerToAttribute h1; h1._name = name; |
|
typename std::set<PointerToAttribute > ::const_iterator i; |
|
|
|
i =m.edge_attr.find(h1); |
|
if(i!=m.edge_attr.end()) |
|
if((*i)._sizeof == sizeof(ATTR_TYPE) ){ |
|
if( (*i)._padding != 0 ){ |
|
PointerToAttribute attr = (*i); // copy the PointerToAttribute |
|
m.edge_attr.erase(i); // remove it from the set |
|
FixPaddedPerEdgeAttribute<ATTR_TYPE>(m,attr); |
|
std::pair<AttrIterator,bool> new_i = m.edge_attr.insert(attr); // insert the modified PointerToAttribute |
|
assert(new_i.second); |
|
i = new_i.first; |
|
} |
|
return typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE>((*i)._handle,(*i).n_attr); |
|
} |
|
|
|
return typename MeshType:: template PerEdgeAttributeHandle<ATTR_TYPE>(nullptr,0); |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static |
|
typename MeshType::template ConstPerEdgeAttributeHandle<ATTR_TYPE> |
|
FindPerEdgeAttribute( const MeshType & m, const std::string & name){ |
|
if(!name.empty()){ |
|
PointerToAttribute h1; h1._name = name; |
|
typename std::set<PointerToAttribute > ::const_iterator i; |
|
|
|
i =m.edge_attr.find(h1); |
|
if(i!=m.edge_attr.end()){ |
|
if((*i)._sizeof == sizeof(ATTR_TYPE) ){ |
|
return typename MeshType::template ConstPerEdgeAttributeHandle<ATTR_TYPE>((*i)._handle,(*i).n_attr); |
|
} |
|
} |
|
} |
|
return typename MeshType:: template ConstPerEdgeAttributeHandle<ATTR_TYPE>(nullptr,0); |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static void GetAllPerEdgeAttribute(const MeshType & m, std::vector<std::string> &all){ |
|
all.clear(); |
|
typename std::set<PointerToAttribute > :: const_iterator i; |
|
for(i = m.edge_attr.begin(); i != m.edge_attr.end(); ++i ) |
|
if(!(*i)._name.empty()) |
|
{ |
|
typename MeshType:: template ConstPerEdgeAttributeHandle<ATTR_TYPE> hh; |
|
hh = Allocator<MeshType>:: template FindPerEdgeAttribute <ATTR_TYPE>(m,(*i)._name); |
|
if(IsValidHandle<ATTR_TYPE>(m,hh)) |
|
all.push_back((*i)._name); |
|
} |
|
} |
|
|
|
/*! \brief If the per-edge attribute exists, delete it. |
|
*/ |
|
template <class ATTR_TYPE> |
|
static |
|
void |
|
DeletePerEdgeAttribute( MeshType & m,typename MeshType::template PerEdgeAttributeHandle<ATTR_TYPE> & h){ |
|
typename std::set<PointerToAttribute > ::iterator i; |
|
for( i = m.edge_attr.begin(); i != m.edge_attr.end(); ++i) |
|
if( (*i)._handle == h._handle ){ |
|
delete ((SimpleTempData<EdgeContainer,ATTR_TYPE>*)(*i)._handle); |
|
m.edge_attr.erase(i); |
|
return;} |
|
} |
|
|
|
// Generic DeleteAttribute. |
|
// It must not crash if you try to delete a non existing attribute, |
|
// because you do not have a way of asking for a handle of an attribute for which you do not know the type. |
|
static |
|
bool DeletePerEdgeAttribute( MeshType & m, std::string name){ |
|
AttrIterator i; |
|
PointerToAttribute h1; h1._name = name; |
|
i = m.edge_attr.find(h1); |
|
if(i==m.edge_attr.end()) return false; |
|
delete ((SimpleTempDataBase*)(*i)._handle); |
|
m.edge_attr.erase(i); |
|
return true; |
|
} |
|
|
|
/// Per Face Attributes |
|
/** |
|
* @brief Checks if a handle to a Per-Face attribute is valid |
|
*/ |
|
template <class ATTR_TYPE> |
|
static |
|
bool IsValidHandle( const MeshType & m, const typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE> & a){ |
|
if(a._handle == nullptr) return false; |
|
for(AttrIterator i = m.face_attr.begin(); i!=m.face_attr.end();++i) |
|
if ( (*i).n_attr == a.n_attr ) return true; |
|
return false; |
|
} |
|
|
|
/** |
|
* @brief Checks if a const handle to a Per-Face attribute is valid |
|
*/ |
|
template <class ATTR_TYPE> |
|
static |
|
bool IsValidHandle( const MeshType & m, const typename MeshType::template ConstPerFaceAttributeHandle<ATTR_TYPE> & a){ |
|
if(a._handle == nullptr) return false; |
|
for(AttrIterator i = m.face_attr.begin(); i!=m.face_attr.end();++i) |
|
if ( (*i).n_attr == a.n_attr ) return true; |
|
return false; |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static |
|
typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE> |
|
AddPerFaceAttribute( MeshType & m, std::string name){ |
|
PAIte i; |
|
PointerToAttribute h; |
|
h._name = name; |
|
if(!name.empty()){ |
|
i = m.face_attr.find(h); |
|
assert(i ==m.face_attr.end() );// an attribute with this name exists |
|
} |
|
|
|
h._sizeof = sizeof(ATTR_TYPE); |
|
h._padding = 0; |
|
h._handle = new SimpleTempData<FaceContainer,ATTR_TYPE>(m.face); |
|
h._type = typeid(ATTR_TYPE); |
|
m.attrn++; |
|
h.n_attr = m.attrn; |
|
std::pair < AttrIterator , bool> res = m.face_attr.insert(h); |
|
return typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE>(res.first->_handle,res.first->n_attr); |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static |
|
typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE> |
|
AddPerFaceAttribute( MeshType & m){ |
|
return AddPerFaceAttribute<ATTR_TYPE>(m,std::string("")); |
|
} |
|
|
|
/*! \brief gives a handle to a per-face attribute with a given name and ATTR_TYPE |
|
\returns a valid handle. If the name is not empty and an attribute with that name and type exists returns a handle to it. |
|
Otherwise return a hanlde to a newly created. |
|
*/ |
|
template <class ATTR_TYPE> |
|
static |
|
typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE> |
|
GetPerFaceAttribute( MeshType & m, std::string name = std::string("")){ |
|
typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE> h; |
|
if(!name.empty()){ |
|
h = FindPerFaceAttribute<ATTR_TYPE>(m,name); |
|
if(IsValidHandle(m,h)) |
|
return h; |
|
} |
|
return AddPerFaceAttribute<ATTR_TYPE>(m,name); |
|
} |
|
|
|
/*! \brief gives a handle to a per-face attribute with a given name and ATTR_TYPE |
|
\returns a valid handle. If the name is not empty and an attribute with that name and type exists returns a handle to it. |
|
Otherwise, returns an invalid handle (check it using IsValidHandle). |
|
*/ |
|
template <class ATTR_TYPE> |
|
static |
|
typename MeshType::template ConstPerFaceAttributeHandle<ATTR_TYPE> |
|
GetPerFaceAttribute( const MeshType & m, std::string name = std::string("")){ |
|
return FindPerFaceAttribute<ATTR_TYPE>(m,name); |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static |
|
typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE> |
|
FindPerFaceAttribute( MeshType & m, const std::string & name){ |
|
assert(!name.empty()); |
|
PointerToAttribute h1; h1._name = name; |
|
typename std::set<PointerToAttribute > ::iterator i; |
|
|
|
i =m.face_attr.find(h1); |
|
if(i!=m.face_attr.end()) |
|
if((*i)._sizeof == sizeof(ATTR_TYPE) ){ |
|
if( (*i)._padding != 0 ){ |
|
PointerToAttribute attr = (*i); // copy the PointerToAttribute |
|
m.face_attr.erase(i); // remove it from the set |
|
FixPaddedPerFaceAttribute<ATTR_TYPE>(m,attr); |
|
std::pair<AttrIterator,bool> new_i = m.face_attr.insert(attr); // insert the modified PointerToAttribute |
|
assert(new_i.second); |
|
i = new_i.first; |
|
} |
|
return typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE>((*i)._handle,(*i).n_attr); |
|
} |
|
return typename MeshType:: template PerFaceAttributeHandle<ATTR_TYPE>(nullptr,0); |
|
} |
|
|
|
/** |
|
* @brief Try to retrieve a const handle to an attribute with a given name |
|
* and ATTR_TYPE, from the given const mesh. |
|
* If not found, an invalid handle will be returned. |
|
* Check it with the function IsValidHandle |
|
*/ |
|
template <class ATTR_TYPE> |
|
static |
|
typename MeshType::template ConstPerFaceAttributeHandle<ATTR_TYPE> |
|
FindPerFaceAttribute( const MeshType & m, const std::string & name){ |
|
if(!name.empty()){ |
|
PointerToAttribute h1; h1._name = name; |
|
typename std::set<PointerToAttribute > ::iterator i; |
|
|
|
i =m.face_attr.find(h1); |
|
if(i!=m.face_attr.end()){ |
|
if((*i)._sizeof == sizeof(ATTR_TYPE) ){ |
|
return typename MeshType::template ConstPerFaceAttributeHandle<ATTR_TYPE>((*i)._handle,(*i).n_attr); |
|
} |
|
} |
|
} |
|
return typename MeshType:: template ConstPerFaceAttributeHandle<ATTR_TYPE>(nullptr,0); |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static void GetAllPerFaceAttribute(const MeshType & m, std::vector<std::string> &all){ |
|
all.clear(); |
|
typename std::set<PointerToAttribute > :: const_iterator i; |
|
for(i = m.face_attr.begin(); i != m.face_attr.end(); ++i ) |
|
if(!(*i)._name.empty()) |
|
{ |
|
typename MeshType:: template ConstPerFaceAttributeHandle<ATTR_TYPE> hh; |
|
hh = Allocator<MeshType>:: template FindPerFaceAttribute <ATTR_TYPE>(m,(*i)._name); |
|
if(IsValidHandle<ATTR_TYPE>(m,hh)) |
|
all.push_back((*i)._name); |
|
} |
|
} |
|
|
|
/*! \brief If the per-face attribute exists, delete it. |
|
*/ |
|
template <class ATTR_TYPE> |
|
static void DeletePerFaceAttribute( MeshType & m,typename MeshType::template PerFaceAttributeHandle<ATTR_TYPE> & h){ |
|
typename std::set<PointerToAttribute > ::iterator i; |
|
for( i = m.face_attr.begin(); i != m.face_attr.end(); ++i) |
|
if( (*i)._handle == h._handle ){ |
|
delete ((SimpleTempData<FaceContainer,ATTR_TYPE>*)(*i)._handle); |
|
m.face_attr.erase(i); |
|
return;} |
|
|
|
} |
|
|
|
// Generic DeleteAttribute. |
|
// It must not crash if you try to delete a non existing attribute, |
|
// because you do not have a way of asking for a handle of an attribute for which you do not know the type. |
|
static bool DeletePerFaceAttribute( MeshType & m, std::string name){ |
|
AttrIterator i; |
|
PointerToAttribute h1; h1._name = name; |
|
i = m.face_attr.find(h1); |
|
if(i==m.face_attr.end()) return false; |
|
delete ((SimpleTempDataBase*)(*i)._handle); |
|
m.face_attr.erase(i); |
|
return true; |
|
} |
|
|
|
/// Per Tetra Attributes |
|
template <class ATTR_TYPE> |
|
static bool IsValidHandle(const MeshType & m, const typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE> & a) |
|
{ |
|
if (a._handle == nullptr) |
|
return false; |
|
for (AttrIterator i = m.tetra_attr.begin(); i != m.tetra_attr.end(); ++i) |
|
if ((*i).n_attr == a.n_attr) |
|
return true; |
|
return false; |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static bool IsValidHandle(const MeshType & m, const typename MeshType::template ConstPerTetraAttributeHandle<ATTR_TYPE> & a) |
|
{ |
|
if (a._handle == nullptr) |
|
return false; |
|
for (AttrIterator i = m.tetra_attr.begin(); i != m.tetra_attr.end(); ++i) |
|
if ((*i).n_attr == a.n_attr) |
|
return true; |
|
return false; |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE> AddPerTetraAttribute(MeshType & m, std::string name) |
|
{ |
|
PAIte i; |
|
PointerToAttribute h; |
|
h._name = name; |
|
if (!name.empty()) |
|
{ |
|
i = m.tetra_attr.find(h); |
|
assert(i == m.tetra_attr.end()); |
|
} |
|
|
|
h._sizeof = sizeof(ATTR_TYPE); |
|
h._padding = 0; |
|
h._handle = new SimpleTempData<TetraContainer, ATTR_TYPE>(m.tetra); |
|
h._type = typeid(ATTR_TYPE); |
|
m.attrn++; |
|
h.n_attr = m.attrn; |
|
std::pair<AttrIterator, bool> res = m.tetra_attr.insert(h); |
|
return typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE>(res.first->_handle, res.first->n_attr); |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE> AddPerTetraAttribute(MeshType &m) |
|
{ |
|
return AddPerTetraAttribute<ATTR_TYPE>(m, std::string("")); |
|
} |
|
|
|
/*! \brief gives a handle to a per-tetra attribute with a given name and ATTR_TYPE |
|
\returns a valid handle. If the name is not empty and an attribute with that name and type exists returns a handle to it. |
|
Otherwise return a hanlde to a newly created. |
|
*/ |
|
template <class ATTR_TYPE> |
|
static typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE> GetPerTetraAttribute(MeshType &m, std::string name = std::string("")) |
|
{ |
|
typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE> h; |
|
if (!name.empty()) |
|
{ |
|
h = FindPerTetraAttribute<ATTR_TYPE>(m, name); |
|
if (IsValidHandle(m, h)) |
|
return h; |
|
} |
|
return AddPerTetraAttribute<ATTR_TYPE>(m, name); |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static typename MeshType::template ConstPerTetraAttributeHandle<ATTR_TYPE> GetPerTetraAttribute(const MeshType &m, std::string name = std::string("")) |
|
{ |
|
return FindPerTetraAttribute<ATTR_TYPE>(m, name); |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE> FindPerTetraAttribute(MeshType &m, const std::string &name) |
|
{ |
|
assert(!name.empty()); |
|
PointerToAttribute h1; |
|
h1._name = name; |
|
typename std::set<PointerToAttribute>::iterator i; |
|
|
|
i = m.tetra_attr.find(h1); |
|
if (i != m.tetra_attr.end()) |
|
if ((*i)._sizeof == sizeof(ATTR_TYPE)) |
|
{ |
|
if ((*i)._padding != 0) |
|
{ |
|
PointerToAttribute attr = (*i); // copy the PointerToAttribute |
|
m.tetra_attr.erase(i); // remove it from the set |
|
FixPaddedPerTetraAttribute<ATTR_TYPE>(m, attr); |
|
std::pair<AttrIterator, bool> new_i = m.tetra_attr.insert(attr); // insert the modified PointerToAttribute |
|
assert(new_i.second); |
|
i = new_i.first; |
|
} |
|
return typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE>((*i)._handle, (*i).n_attr); |
|
} |
|
return typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE>(nullptr, 0); |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static typename MeshType::template ConstPerTetraAttributeHandle<ATTR_TYPE> FindPerTetraAttribute(const MeshType &m, const std::string &name) |
|
{ |
|
if(!name.empty()){ |
|
PointerToAttribute h1; |
|
h1._name = name; |
|
typename std::set<PointerToAttribute>::iterator i; |
|
|
|
i = m.tetra_attr.find(h1); |
|
if (i != m.tetra_attr.end()){ |
|
if ((*i)._sizeof == sizeof(ATTR_TYPE)) |
|
{ |
|
return typename MeshType::template ConstPerTetraAttributeHandle<ATTR_TYPE>((*i)._handle, (*i).n_attr); |
|
} |
|
} |
|
} |
|
return typename MeshType::template ConstPerTetraAttributeHandle<ATTR_TYPE>(nullptr, 0); |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static void GetAllPerTetraAttribute(const MeshType &m, std::vector<std::string> &all) |
|
{ |
|
all.clear(); |
|
typename std::set<PointerToAttribute>::const_iterator i; |
|
for (i = m.tetra_attr.begin(); i != m.tetra_attr.end(); ++i) |
|
if (!(*i)._name.empty()) |
|
{ |
|
typename MeshType::template ConstPerTetraAttributeHandle<ATTR_TYPE> hh; |
|
hh = Allocator<MeshType>::template FindPerTetraAttribute<ATTR_TYPE>(m, (*i)._name); |
|
if (IsValidHandle<ATTR_TYPE>(m, hh)) |
|
all.push_back((*i)._name); |
|
} |
|
} |
|
|
|
/*! \brief If the per-face attribute exists, delete it. |
|
*/ |
|
template <class ATTR_TYPE> |
|
static void DeletePerTetraAttribute(MeshType &m, typename MeshType::template PerTetraAttributeHandle<ATTR_TYPE> &h) |
|
{ |
|
typename std::set<PointerToAttribute>::iterator i; |
|
for (i = m.tetra_attr.begin(); i != m.tetra_attr.end(); ++i) |
|
if ((*i)._handle == h._handle) |
|
{ |
|
delete ((SimpleTempData<TetraContainer, ATTR_TYPE> *)(*i)._handle); |
|
m.tetra_attr.erase(i); |
|
return; |
|
} |
|
} |
|
|
|
// Generic DeleteAttribute. |
|
// It must not crash if you try to delete a non existing attribute, |
|
// because you do not have a way of asking for a handle of an attribute for which you do not know the type. |
|
static bool DeletePerTetraAttribute(MeshType &m, std::string name) |
|
{ |
|
AttrIterator i; |
|
PointerToAttribute h1; |
|
h1._name = name; |
|
i = m.tetra_attr.find(h1); |
|
if (i == m.tetra_attr.end()) |
|
return false; |
|
delete ((SimpleTempDataBase *)(*i)._handle); |
|
m.tetra_attr.erase(i); |
|
return true; |
|
} |
|
|
|
|
|
/// Per Mesh Attributes |
|
template <class ATTR_TYPE> |
|
static |
|
bool IsValidHandle(const MeshType & m, const typename MeshType::template PerMeshAttributeHandle<ATTR_TYPE> & a){ |
|
if(a._handle == nullptr) return false; |
|
for(AttrIterator i = m.mesh_attr.begin(); i!=m.mesh_attr.end();++i) |
|
if ( (*i).n_attr == a.n_attr ) return true; |
|
return false; |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static |
|
bool IsValidHandle(const MeshType & m, const typename MeshType::template ConstPerMeshAttributeHandle<ATTR_TYPE> & a){ |
|
if(a._handle == nullptr) return false; |
|
for(AttrIterator i = m.mesh_attr.begin(); i!=m.mesh_attr.end();++i) |
|
if ( (*i).n_attr == a.n_attr ) return true; |
|
return false; |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static |
|
typename MeshType::template PerMeshAttributeHandle<ATTR_TYPE> |
|
AddPerMeshAttribute( MeshType & m, std::string name){ |
|
PAIte i; |
|
PointerToAttribute h; |
|
h._name = name; |
|
if(!name.empty()){ |
|
i = m.mesh_attr.find(h); |
|
assert(i ==m.mesh_attr.end() );// an attribute with this name exists |
|
} |
|
h._sizeof = sizeof(ATTR_TYPE); |
|
h._padding = 0; |
|
h._handle = new Attribute<ATTR_TYPE>(); |
|
h._type = typeid(ATTR_TYPE); |
|
m.attrn++; |
|
h.n_attr = m.attrn; |
|
std::pair < AttrIterator , bool> res = m.mesh_attr.insert(h); |
|
return typename MeshType::template PerMeshAttributeHandle<ATTR_TYPE>(res.first->_handle,res.first->n_attr); |
|
} |
|
|
|
/*! \brief gives a handle to a per-edge attribute with a given name and ATTR_TYPE |
|
\returns a valid handle. If the name is not empty and an attribute with that name and type exists returns a handle to it. |
|
Otherwise return a hanlde to a newly created. |
|
*/ |
|
template <class ATTR_TYPE> |
|
static |
|
typename MeshType::template PerMeshAttributeHandle<ATTR_TYPE> |
|
GetPerMeshAttribute( MeshType & m, std::string name = std::string("")){ |
|
typename MeshType::template PerMeshAttributeHandle<ATTR_TYPE> h; |
|
if(!name.empty()){ |
|
h = FindPerMeshAttribute<ATTR_TYPE>(m,name); |
|
if(IsValidHandle(m,h)) |
|
return h; |
|
} |
|
return AddPerMeshAttribute<ATTR_TYPE>(m,name); |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static |
|
typename MeshType::template ConstPerMeshAttributeHandle<ATTR_TYPE> |
|
GetPerMeshAttribute(const MeshType & m, std::string name = std::string("")){ |
|
return FindPerMeshAttribute<ATTR_TYPE>(m,name); |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static |
|
typename MeshType::template PerMeshAttributeHandle<ATTR_TYPE> |
|
FindPerMeshAttribute( MeshType & m, const std::string & name){ |
|
assert(!name.empty()); |
|
PointerToAttribute h1; h1._name = name; |
|
typename std::set<PointerToAttribute > ::iterator i; |
|
|
|
i =m.mesh_attr.find(h1); |
|
if(i!=m.mesh_attr.end()) |
|
if((*i)._sizeof == sizeof(ATTR_TYPE) ){ |
|
if( (*i)._padding != 0 ){ |
|
PointerToAttribute attr = (*i); // copy the PointerToAttribute |
|
m.mesh_attr.erase(i); // remove it from the set |
|
FixPaddedPerMeshAttribute<ATTR_TYPE>(m,attr); |
|
std::pair<AttrIterator,bool> new_i = m.mesh_attr.insert(attr); // insert the modified PointerToAttribute |
|
assert(new_i.second); |
|
i = new_i.first; |
|
} |
|
|
|
return typename MeshType::template PerMeshAttributeHandle<ATTR_TYPE>((*i)._handle,(*i).n_attr); |
|
} |
|
|
|
return typename MeshType:: template PerMeshAttributeHandle<ATTR_TYPE>(nullptr,0); |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static |
|
typename MeshType::template ConstPerMeshAttributeHandle<ATTR_TYPE> |
|
FindPerMeshAttribute( const MeshType & m, const std::string & name){ |
|
if (!name.empty()){ |
|
PointerToAttribute h1; h1._name = name; |
|
typename std::set<PointerToAttribute > ::iterator i; |
|
i =m.mesh_attr.find(h1); |
|
if(i!=m.mesh_attr.end()){ |
|
if((*i)._sizeof == sizeof(ATTR_TYPE) ){ |
|
return typename MeshType::template ConstPerMeshAttributeHandle<ATTR_TYPE>((*i)._handle,(*i).n_attr); |
|
} |
|
} |
|
} |
|
|
|
return typename MeshType:: template ConstPerMeshAttributeHandle<ATTR_TYPE>(nullptr,0); |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static void GetAllPerMeshAttribute(const MeshType & m, std::vector<std::string> &all){ |
|
typename std::set<PointerToAttribute > :: iterator i; |
|
for(i = m.mesh_attr.begin(); i != m.mesh_attr.end(); ++i ) |
|
if((*i)._sizeof == sizeof(ATTR_TYPE)) |
|
all.push_back((*i)._name); |
|
} |
|
|
|
/*! \brief If the per-mesh attribute exists, delete it. |
|
*/ |
|
template <class ATTR_TYPE> |
|
static void DeletePerMeshAttribute( MeshType & m,typename MeshType::template PerMeshAttributeHandle<ATTR_TYPE> & h){ |
|
typename std::set<PointerToAttribute > ::iterator i; |
|
for( i = m.mesh_attr.begin(); i != m.mesh_attr.end(); ++i) |
|
if( (*i)._handle == h._handle ){ |
|
delete (( Attribute<ATTR_TYPE> *)(*i)._handle); |
|
m.mesh_attr.erase(i); |
|
return;} |
|
} |
|
|
|
// Generic DeleteAttribute. |
|
// It must not crash if you try to delete a non existing attribute, |
|
// because you do not have a way of asking for a handle of an attribute for which you do not know the type. |
|
static bool DeletePerMeshAttribute( MeshType & m, std::string name){ |
|
AttrIterator i; |
|
PointerToAttribute h1; h1._name = name; |
|
i = m.mesh_attr.find(h1); |
|
if (i==m.mesh_attr.end()) |
|
return false; |
|
delete ((SimpleTempDataBase *)(*i)._handle); |
|
m.mesh_attr.erase(i); |
|
return true; |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static void FixPaddedPerVertexAttribute (MeshType & m, PointerToAttribute & pa){ |
|
|
|
// create the container of the right type |
|
SimpleTempData<VertContainer,ATTR_TYPE>* _handle = new SimpleTempData<VertContainer,ATTR_TYPE>(m.vert); |
|
|
|
// copy the padded container in the new one |
|
_handle->Resize(m.vert.size()); |
|
for(size_t i = 0; i < m.vert.size(); ++i){ |
|
ATTR_TYPE * dest = &(*_handle)[i]; |
|
char * ptr = (char*)( ((SimpleTempDataBase *)pa._handle)->DataBegin()); |
|
ATTR_TYPE* attrptr = (ATTR_TYPE*)ptr; |
|
*dest = attrptr[i * pa._sizeof ]; |
|
//memcpy((void*)dest , |
|
//(void*) &(ptr[i * pa._sizeof ]) ,sizeof(ATTR_TYPE)); |
|
} |
|
|
|
// remove the padded container |
|
delete ((SimpleTempDataBase*) pa._handle); |
|
|
|
// update the pointer to data |
|
pa._sizeof = sizeof(ATTR_TYPE); |
|
|
|
// update the pointer to data |
|
pa._handle = _handle; |
|
|
|
// zero the padding |
|
pa._padding = 0; |
|
} |
|
template <class ATTR_TYPE> |
|
static void FixPaddedPerEdgeAttribute (MeshType & m, PointerToAttribute & pa){ |
|
|
|
// create the container of the right type |
|
SimpleTempData<EdgeContainer,ATTR_TYPE>* _handle = new SimpleTempData<EdgeContainer,ATTR_TYPE>(m.edge); |
|
|
|
// copy the padded container in the new one |
|
_handle->Resize(m.edge.size()); |
|
for(size_t i = 0; i < m.edge.size(); ++i){ |
|
ATTR_TYPE * dest = &(*_handle)[i]; |
|
char * ptr = (char*)( ((SimpleTempDataBase *)pa._handle)->DataBegin()); |
|
ATTR_TYPE* attrptr = (ATTR_TYPE*)ptr; |
|
*dest = attrptr[i * pa._sizeof ]; |
|
//memcpy((void*)dest , |
|
//(void*) &(ptr[i * pa._sizeof ]) ,sizeof(ATTR_TYPE)); |
|
} |
|
|
|
// remove the padded container |
|
delete ((SimpleTempDataBase*) pa._handle); |
|
|
|
// update the pointer to data |
|
pa._sizeof = sizeof(ATTR_TYPE); |
|
|
|
// update the pointer to data |
|
pa._handle = _handle; |
|
|
|
// zero the padding |
|
pa._padding = 0; |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static void FixPaddedPerFaceAttribute ( MeshType & m,PointerToAttribute & pa){ |
|
|
|
// create the container of the right type |
|
SimpleTempData<FaceContainer,ATTR_TYPE>* _handle = new SimpleTempData<FaceContainer,ATTR_TYPE>(m.face); |
|
|
|
// copy the padded container in the new one |
|
_handle->Resize(m.face.size()); |
|
for(size_t i = 0; i < m.face.size(); ++i){ |
|
ATTR_TYPE * dest = &(*_handle)[i]; |
|
char * ptr = (char*)( ((SimpleTempDataBase *)pa._handle)->DataBegin()); |
|
ATTR_TYPE* attrptr = (ATTR_TYPE*)ptr; |
|
*dest = attrptr[i * pa._sizeof ]; |
|
//memcpy((void*)dest , |
|
// (void*) &(ptr[i * pa._sizeof ]) ,sizeof(ATTR_TYPE)); |
|
} |
|
|
|
// remove the padded container |
|
delete ((SimpleTempDataBase*) pa._handle); |
|
|
|
// update the pointer to data |
|
pa._sizeof = sizeof(ATTR_TYPE); |
|
|
|
// update the pointer to data |
|
pa._handle = _handle; |
|
|
|
// zero the padding |
|
pa._padding = 0; |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static void FixPaddedPerTetraAttribute(MeshType &m, PointerToAttribute &pa) |
|
{ |
|
|
|
// create the container of the right type |
|
SimpleTempData<TetraContainer, ATTR_TYPE> *_handle = new SimpleTempData<TetraContainer, ATTR_TYPE>(m.tetra); |
|
|
|
// copy the padded container in the new one |
|
_handle->Resize(m.tetra.size()); |
|
for (size_t i = 0; i < m.tetra.size(); ++i) |
|
{ |
|
ATTR_TYPE *dest = &(*_handle)[i]; |
|
char *ptr = (char *)(((SimpleTempDataBase *)pa._handle)->DataBegin()); |
|
ATTR_TYPE* attrptr = (ATTR_TYPE*)ptr; |
|
*dest = attrptr[i * pa._sizeof ]; |
|
//memcpy((void *)dest, |
|
//(void *)&(ptr[i * pa._sizeof]), sizeof(ATTR_TYPE)); |
|
} |
|
|
|
// remove the padded container |
|
delete ((SimpleTempDataBase *)pa._handle); |
|
|
|
// update the pointer to data |
|
pa._sizeof = sizeof(ATTR_TYPE); |
|
|
|
// update the pointer to data |
|
pa._handle = _handle; |
|
|
|
// zero the padding |
|
pa._padding = 0; |
|
} |
|
|
|
template <class ATTR_TYPE> |
|
static void FixPaddedPerMeshAttribute ( MeshType & /* m */,PointerToAttribute & pa){ |
|
|
|
// create the container of the right type |
|
Attribute<ATTR_TYPE> * _handle = new Attribute<ATTR_TYPE>(); |
|
|
|
// copy the padded container in the new one |
|
ATTR_TYPE* dest = (ATTR_TYPE*)_handle->DataBegin(); |
|
char* ptr = (char*)( ((Attribute<ATTR_TYPE> *)pa._handle)->DataBegin()); |
|
ATTR_TYPE* attrptr = (ATTR_TYPE*)ptr; |
|
*dest = *attrptr; |
|
//memcpy((void*)dest ,(void*) &(ptr[0]) ,sizeof(ATTR_TYPE)); |
|
|
|
// remove the padded container |
|
delete ( (Attribute<ATTR_TYPE> *) pa._handle); |
|
|
|
// update the pointer to data |
|
pa._sizeof = sizeof(ATTR_TYPE); |
|
|
|
// update the pointer to data |
|
pa._handle = _handle; |
|
|
|
// zero the padding |
|
pa._padding = 0; |
|
} |
|
|
|
}; // end Allocator class |
|
|
|
|
|
/** @} */ // end doxygen group trimesh |
|
} // end namespace tri |
|
} // end namespace vcg |
|
|
|
#endif
|
|
|