You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
199 lines
6.2 KiB
199 lines
6.2 KiB
/**************************************************************************** |
|
* VCGLib o o * |
|
* Visual and Computer Graphics Library o o * |
|
* _ O _ * |
|
* Copyright(C) 2004-2016 \/)\/ * |
|
* Visual Computing Lab /\/| * |
|
* ISTI - Italian National Research Council | * |
|
* \ * |
|
* All rights reserved. * |
|
* * |
|
* This program is free software; you can redistribute it and/or modify * |
|
* it under the terms of the GNU General Public License as published by * |
|
* the Free Software Foundation; either version 2 of the License, or * |
|
* (at your option) any later version. * |
|
* * |
|
* This program is distributed in the hope that it will be useful, * |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of * |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * |
|
* for more details. * |
|
* * |
|
****************************************************************************/ |
|
|
|
#ifndef __VCGLIB_SPHERICAL_HARMONICS_H |
|
#define __VCGLIB_SPHERICAL_HARMONICS_H |
|
|
|
#include <climits> |
|
|
|
#include <vcg/math/base.h> |
|
#include <vcg/math/random_generator.h> |
|
#include <vcg/math/legendre.h> |
|
#include <vcg/math/factorial.h> |
|
|
|
namespace vcg{ |
|
namespace math{ |
|
|
|
template <typename ScalarType> |
|
class DummyPolarFunctor{ |
|
public: |
|
inline ScalarType operator()(ScalarType theta, ScalarType phi) {return ScalarType(0);} |
|
}; |
|
|
|
|
|
template <typename ScalarType, int MAX_BAND = 4> |
|
class ScalingFactor |
|
{ |
|
private : |
|
|
|
ScalarType k_factor[MAX_BAND][MAX_BAND]; |
|
|
|
static ScalingFactor sf; |
|
|
|
ScalingFactor() |
|
{ |
|
for (unsigned l = 0; l < MAX_BAND; ++l) |
|
for (unsigned m = 0; m <= l; ++m) |
|
k_factor[l][m] = Sqrt( ( (2.0*l + 1.0) * Factorial<ScalarType>(l-m) ) / (4.0 * M_PI * Factorial<ScalarType>(l + m)) ); |
|
} |
|
|
|
public : |
|
static ScalarType K(unsigned l, unsigned m) |
|
{ |
|
return sf.k_factor[l][m]; |
|
} |
|
}; |
|
|
|
template <typename ScalarType, int MAX_BAND> |
|
ScalingFactor<ScalarType, MAX_BAND> ScalingFactor<ScalarType, MAX_BAND>::sf; |
|
|
|
/** |
|
* Although the Real Spherical Harmonic Function is correctly defined over any |
|
* positive l and any -l <= m <= l, the two internal functions computing the |
|
* imaginary and real parts of the Complex Spherical Harmonic Functions are defined |
|
* for positive m only. |
|
*/ |
|
template <typename ScalarType, int MAX_BAND = 4> |
|
class SphericalHarmonics{ |
|
|
|
private : |
|
|
|
static DynamicLegendre<ScalarType, MAX_BAND> legendre; |
|
|
|
static ScalarType scaling_factor(unsigned l, unsigned m) |
|
{ |
|
return ScalingFactor<ScalarType, MAX_BAND>::K(l,m); |
|
} |
|
|
|
inline static ScalarType complex_spherical_harmonic_re(unsigned l, unsigned m, ScalarType theta, ScalarType phi) |
|
{ |
|
return scaling_factor(l, m) * legendre.AssociatedPolynomial(l, m, Cos(theta), Sin(theta)) * Cos(m * phi); |
|
} |
|
|
|
inline static ScalarType complex_spherical_harmonic_im(unsigned l, unsigned m, ScalarType theta, ScalarType phi) |
|
{ |
|
return scaling_factor(l, m) * legendre.AssociatedPolynomial(l, m, Cos(theta), Sin(theta)) * Sin(m * phi); |
|
} |
|
|
|
ScalarType coefficients[MAX_BAND * MAX_BAND]; |
|
|
|
public : |
|
|
|
/** |
|
* Returns the Real Spherical Harmonic Function |
|
* |
|
* l is any positive integer, |
|
* m is such that -l <= m <= l |
|
* theta is inside [0, PI] |
|
* phi is inside [0, 2*PI] |
|
*/ |
|
static ScalarType Real(unsigned l, int m, ScalarType theta, ScalarType phi) |
|
{ |
|
assert((int)-l <= m && m <= (int)l && theta >= 0.0 && theta <= (ScalarType)M_PI && phi >= 0.0 && phi <= (ScalarType)(2.0 * M_PI)); |
|
|
|
if (m > 0) return SQRT_TWO * complex_spherical_harmonic_re(l, m, theta, phi); |
|
|
|
else if (m == 0) return scaling_factor(l, 0) * legendre.Polynomial(l, Cos(theta)); |
|
|
|
else return SQRT_TWO * complex_spherical_harmonic_im(l, -m, theta, phi); |
|
} |
|
|
|
template <typename PolarFunctor> |
|
static SphericalHarmonics Project(PolarFunctor * fun, unsigned n_samples) |
|
{ |
|
const ScalarType weight = 4 * M_PI; |
|
|
|
unsigned sqrt_n_samples = (unsigned int) Sqrt((int)n_samples); |
|
unsigned actual_n_samples = sqrt_n_samples * sqrt_n_samples; |
|
unsigned n_coeff = MAX_BAND * MAX_BAND; |
|
|
|
ScalarType one_over_n = 1.0/(ScalarType)sqrt_n_samples; |
|
|
|
MarsenneTwisterRNG rand; |
|
SphericalHarmonics sph; |
|
|
|
int i = 0; |
|
|
|
for (unsigned k = 0; k < n_coeff; k++ ) sph.coefficients[k] = 0; |
|
|
|
for (unsigned a = 0; a < sqrt_n_samples; ++a ) |
|
{ |
|
for (unsigned b = 0; b < sqrt_n_samples; ++b) |
|
{ |
|
ScalarType x = (a + ScalarType(rand.generate01())) * one_over_n; |
|
ScalarType y = (b + ScalarType(rand.generate01())) * one_over_n; |
|
|
|
ScalarType theta = 2.0 * Acos(Sqrt(1.0 - x)); |
|
ScalarType phi = 2.0 * M_PI * y; |
|
|
|
for (int l = 0; l < (int)MAX_BAND; ++l) |
|
{ |
|
for (int m = -l; m <= l; ++m) |
|
{ |
|
int index = l * (l+1) + m; |
|
sph.coefficients[index] += (*fun)(theta, phi) * Real(l, m, theta, phi); |
|
} |
|
} |
|
i++; |
|
} |
|
} |
|
|
|
ScalarType factor = weight / actual_n_samples; |
|
for(i = 0; i < (int)n_coeff; ++i) |
|
{ |
|
sph.coefficients[i] *= factor; |
|
} |
|
|
|
return sph; |
|
} |
|
|
|
static SphericalHarmonics Wrap(ScalarType * _coefficients) |
|
{ |
|
SphericalHarmonics sph; |
|
for(int i = 0; i < (int) MAX_BAND * MAX_BAND; ++i) sph.coefficients[i] = _coefficients[i]; |
|
return sph; |
|
} |
|
|
|
ScalarType operator()(ScalarType theta, ScalarType phi) |
|
{ |
|
ScalarType f = 0; |
|
|
|
for (int l = 0; l < MAX_BAND; ++l) |
|
{ |
|
for (int m = -l; m <= l; ++m) |
|
{ |
|
int index = l * (l+1) + m; |
|
f += (coefficients[index] * Real(l, m, theta, phi)); |
|
} |
|
} |
|
|
|
return f; |
|
} |
|
}; |
|
|
|
template <typename ScalarType, int MAX_BAND> |
|
DynamicLegendre<ScalarType, MAX_BAND> SphericalHarmonics<ScalarType, MAX_BAND>::legendre; |
|
|
|
}} //namespace vcg::math |
|
|
|
#endif
|
|
|