diff --git a/libs/MVS/mask_face_occlusion.py b/libs/MVS/mask_face_occlusion.py index acf8ca2..0203d25 100755 --- a/libs/MVS/mask_face_occlusion.py +++ b/libs/MVS/mask_face_occlusion.py @@ -1,3 +1,4 @@ +import time import open3d as o3d import os import numpy as np @@ -9,6 +10,9 @@ from get_pose_matrix import get_w2c import argparse import matplotlib.pyplot as plt import collections +import torch +import torch.nn.functional as F +from torch.utils.dlpack import to_dlpack, from_dlpack class ModelProcessor: def __init__(self): @@ -54,6 +58,10 @@ class ModelProcessor: if not os.path.exists(self.pose_path): raise FileNotFoundError(f"Camera data not found: {self.pose_path}") + # GPU设备设置 + self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') + print(f"Using device: {self.device}") + self.mesh = None def load_model(self): @@ -89,9 +97,370 @@ class ModelProcessor: self.uv_array = np.asarray(self.mesh.triangle_uvs) # print(f"UV 坐标形状:{self.uv_array.shape}, {self.uv_array[0][1]}") #""" + #""" + # 将数据转移到GPU + vertices = np.asarray(self.mesh.vertices, dtype=np.float32) + triangles = np.asarray(self.mesh.triangles, dtype=np.int32) + + # 转换为PyTorch张量并转移到GPU + self.vertices_tensor = torch.from_numpy(vertices).to(self.device) + self.triangles_tensor = torch.from_numpy(triangles).to(self.device) + + print(f"Loaded {len(vertices)} vertices and {len(triangles)} triangles and {len(self.triangles_tensor)} triangles_tensor") + + self._build_face_adjacency_gpu() + #""" + # self._build_face_adjacency() + + if not self.mesh.has_vertex_colors(): + num_vertices = len(self.mesh.vertices) + self.mesh.vertex_colors = o3d.utility.Vector3dVector( + np.ones((num_vertices, 3)) + ) + + def _build_face_adjacency_gpu(self): + """优化的GPU版本面片邻接关系构建""" + if len(self.triangles_tensor) == 0: + return + + triangles = self.triangles_tensor.cpu().numpy() # 转到CPU处理 + num_faces = len(triangles) + + # 使用更高效的方法构建边-面映射 + edge_face_map = {} + + for face_idx, tri in enumerate(triangles): + # 获取三条边(排序顶点保证唯一性) + edges = [ + tuple(sorted([tri[0], tri[1]])), + tuple(sorted([tri[1], tri[2]])), + tuple(sorted([tri[2], tri[0]])) + ] + + for edge in edges: + if edge not in edge_face_map: + edge_face_map[edge] = [] + edge_face_map[edge].append(face_idx) + + # 构建邻接关系 + self.face_adjacency = [[] for _ in range(num_faces)] + + adjacency_count = 0 + for edge, faces in edge_face_map.items(): + if len(faces) > 1: # 只处理共享边 + for i in faces: + for j in faces: + if i != j: + if j not in self.face_adjacency[i]: + self.face_adjacency[i].append(j) + adjacency_count += 1 + + print(f"邻接关系构建完成:") + print(f"- 面片总数: {num_faces}") + print(f"- 边总数: {len(edge_face_map)}") + print(f"- 共享边数: {len([f for f in edge_face_map.values() if len(f) > 1])}") + print(f"- 邻接关系数: {adjacency_count}") + + def _build_depth_pyramid_gpu(self, depth_map, levels=4): + """GPU版本的深度金字塔构建""" + if not isinstance(depth_map, torch.Tensor): + depth_tensor = torch.from_numpy(depth_map).float().to(self.device) + else: + depth_tensor = depth_map.float() + + pyramid = [depth_tensor] + current_level = depth_tensor + + for _ in range(levels-1): + # 使用平均池化进行下采样 + current_level = current_level.unsqueeze(0).unsqueeze(0) # 添加batch和channel维度 + current_level = F.avg_pool2d(current_level, kernel_size=2, stride=2) + current_level = current_level.squeeze(0).squeeze(0) + pyramid.append(current_level) + + return pyramid + + def _hierarchical_occlusion_test_gpu(self, vertices_cam, depth_pyramid, intrinsics, img_size): + """GPU版本的层级遮挡检测 - 直接计算方法""" + fx, fy, cx, cy = intrinsics + height, width = img_size + + # 过滤无效顶点 + valid_mask = vertices_cam[:, 2] > 1e-6 + vertices_valid = vertices_cam[valid_mask] + + if len(vertices_valid) == 0: + return (torch.zeros(len(vertices_cam), dtype=torch.bool, device=self.device), + torch.zeros(len(vertices_cam), dtype=torch.bool, device=self.device)) + + visible = torch.zeros(len(vertices_valid), dtype=torch.bool, device=self.device) + occlusion = torch.zeros(len(vertices_valid), dtype=torch.bool, device=self.device) + + # 批量处理所有层级 + for level in reversed(range(len(depth_pyramid))): + scale = 2 ** level + current_depth = depth_pyramid[level] + h, w = current_depth.shape + + # 直接计算投影坐标,避免矩阵乘法 + x = vertices_valid[:, 0] + y = vertices_valid[:, 1] + z = vertices_valid[:, 2] + + # 缩放的内参 + fx_scaled = max(fx/(scale + 1e-6), 1e-6) + fy_scaled = max(fy/(scale + 1e-6), 1e-6) + cx_scaled = (cx - 0.5)/scale + 0.5 + cy_scaled = (cy - 0.5)/scale + 0.5 + + # 投影计算 + u = (x / z) * fx_scaled + cx_scaled + v = (y / z) * fy_scaled + cy_scaled + + # 边界处理 + u = torch.clamp(u, 0.0, float(w-1)) + v = torch.clamp(v, 0.0, float(h-1)) + + # 转换为整数索引 + u_idx = torch.clamp(torch.floor(u).long(), 0, w-1) + v_idx = torch.clamp(torch.floor(v).long(), 0, h-1) + + # 批量采样深度值 + depth_vals = current_depth[v_idx, u_idx] + + # 批量深度比较 + level_tol = 0.0008 * (2 ** level) + visible |= (z <= (depth_vals + level_tol)) + occlusion |= (z > (depth_vals + level_tol)) + + # 映射回原始顶点数量 + final_visible = torch.zeros(len(vertices_cam), dtype=torch.bool, device=self.device) + final_visible[valid_mask] = visible + + final_occlusion = torch.zeros(len(vertices_cam), dtype=torch.bool, device=self.device) + final_occlusion[valid_mask] = occlusion + + return final_visible, final_occlusion + + def _compute_vertex_in_frustum_gpu(self, fx, fy, cx, cy, R, eye, height, width, depth_map, qvec, tvec): + """GPU版本的视锥体计算和遮挡检测""" + print(f"开始 _compute_vertex_in_frustum_gpu") + + # 直接使用get_w2c,避免重复计算 + w2c = get_w2c(qvec, tvec) + + # 确保w2c是4x4矩阵 + if w2c.shape != (4, 4): + if w2c.shape == (3, 4): + w2c_4x4 = np.eye(4) + w2c_4x4[:3, :] = w2c + w2c = w2c_4x4 + else: + raise ValueError(f"w2c matrix has unexpected shape: {w2c.shape}") + + # 使用GPU张量 + vertices = self.vertices_tensor.float() + ones = torch.ones(len(vertices), 1, device=self.device) + vertices_homo = torch.cat([vertices, ones], dim=1) + + w2c_tensor = torch.tensor(w2c, device=self.device, dtype=torch.float32) + # 简化矩阵乘法 + vertices_cam_homo = (w2c_tensor @ vertices_homo.T).T + vertices_cam = vertices_cam_homo[:, :3] - self._build_face_adjacency() + # 视锥体快速剔除 + valid_z = vertices_cam[:, 2] > 0 + tan_fov_x = (width / 2) / fx + tan_fov_y = (height / 2) / fy + x_ratio = vertices_cam[:, 0] / vertices_cam[:, 2] + y_ratio = vertices_cam[:, 1] / vertices_cam[:, 2] + frustum_mask = valid_z & (torch.abs(x_ratio) <= tan_fov_x) & (torch.abs(y_ratio) <= tan_fov_y) + # 构建深度金字塔 + depth_pyramid = self._build_depth_pyramid_gpu(depth_map) + + # 多级遮挡检测 + visible_mask, occlusion_mask = self._hierarchical_occlusion_test_gpu( + vertices_cam, depth_pyramid, (fx, fy, cx, cy), (height, width) + ) + + final_visible = torch.zeros(len(vertices), dtype=torch.bool, device=self.device) + final_visible[frustum_mask] = visible_mask[frustum_mask] + + final_occlusion = torch.zeros(len(vertices), dtype=torch.bool, device=self.device) + final_occlusion[frustum_mask] = occlusion_mask[frustum_mask] + + # 转换为numpy数组返回 + # return (final_visible.cpu().numpy().tolist(), + # self._occlusion_expansion_gpu(final_occlusion, vertices.cpu().numpy())) + # 转换为numpy数组返回 + return (final_visible.cpu().numpy().tolist()) + + def _occlusion_expansion_gpu(self, occlusion_mask, vertices, radius=0.0008): + """GPU版本的空间哈希遮挡扩展""" + if not isinstance(occlusion_mask, torch.Tensor): + occlusion_tensor = torch.from_numpy(occlusion_mask).to(self.device) + vertices_tensor = torch.from_numpy(vertices).to(self.device) + else: + occlusion_tensor = occlusion_mask + vertices_tensor = torch.from_numpy(vertices).to(self.device) + + # 构建空间哈希 + grid_size = radius * 2 + quantized = (vertices_tensor / grid_size).long() + + # 使用CUDA加速的哈希表 + from collections import defaultdict + hash_table = defaultdict(list) + + # 将数据移回CPU进行哈希构建(这部分在GPU上实现较复杂) + quantized_cpu = quantized.cpu().numpy() + for idx, (x, y, z) in enumerate(quantized_cpu): + hash_table[(x, y, z)].append(idx) + + # 扩展遮挡区域 + dilated_mask = occlusion_tensor.cpu().numpy().copy() + occluded_indices = np.where(occlusion_tensor.cpu().numpy())[0] + + for idx in occluded_indices: + x, y, z = quantized_cpu[idx] + for dx in (-1, 0, 1): + for dy in (-1, 0, 1): + for dz in (-1, 0, 1): + neighbor_cell = (x+dx, y+dy, z+dz) + for neighbor_idx in hash_table.get(neighbor_cell, []): + dilated_mask[neighbor_idx] = True + + return dilated_mask.tolist() + + def _gen_depth_image_gpu(self, cam_data, render): + """生成深度图(保持原样,因为Open3D渲染器可能不支持GPU)""" + # Open3D的渲染器目前主要在CPU上工作 + return self._gen_depth_image(cam_data, render) + + def _flag_model_gpu(self, camera_data, face_points=None): + + # 确保使用正确的深度图生成方式 + render = o3d.visualization.rendering.OffscreenRenderer( + camera_data['width'], camera_data['height']) + + material = o3d.visualization.rendering.MaterialRecord() + render.scene.add_geometry("mesh", self.mesh, material) + + # 生成深度图 - 确保与CPU版本一致 + depth_image = self._gen_depth_image_gpu(camera_data, render) + + # 使用与CPU版本相同的参数计算 + R = self.qvec2rotmat(camera_data['qvec']).T + eye = -R @ camera_data['tvec'] + + # final_visible_list, final_occlusion_list = self._compute_vertex_in_frustum_gpu( + final_visible_list = self._compute_vertex_in_frustum_gpu( + camera_data['fx'], camera_data['fy'], + camera_data['cx'], camera_data['cy'], + R, eye, + camera_data['height'], camera_data['width'], + depth_image, camera_data['qvec'], camera_data['tvec'] + ) + + # 确保使用正确的张量设备 + final_visible_tensor = torch.tensor(final_visible_list, device=self.device) + triangles_tensor = self.triangles_tensor # 直接使用已加载的GPU张量 + + # 向量化计算面片可见性 + v0_indices = triangles_tensor[:, 0] + v1_indices = triangles_tensor[:, 1] + v2_indices = triangles_tensor[:, 2] + + v0_visible = final_visible_tensor[v0_indices] + v1_visible = final_visible_tensor[v1_indices] + v2_visible = final_visible_tensor[v2_indices] + + face_visible = v0_visible | v1_visible | v2_visible + + # 使用与CPU版本相同的后续处理 + shrunk_visibility = self._shrink_face_visibility(face_visible.cpu().numpy(), 6) + expanded_visibility = self._expand_face_visibility(face_visible.cpu().numpy(), 30) + shrunk_visibility2 = self._shrink_face_visibility(face_visible.cpu().numpy(), 50) + expanded_edge = expanded_visibility & ~shrunk_visibility2 + delete_edge = face_visible.cpu().numpy() & ~shrunk_visibility + + return shrunk_visibility, expanded_edge, delete_edge + + """ + def _gen_depth_image_gpu(self, cam_data, render): + # 复制CPU版本的逻辑 + qvec = cam_data['qvec'] + tvec = cam_data['tvec'] + fx = cam_data['fx'] + fy = cam_data['fy'] + cx = cam_data['cx'] + cy = cam_data['cy'] + width = cam_data['width'] + height = cam_data['height'] + + intrinsics = o3d.camera.PinholeCameraIntrinsic( + width, height, fx=fx, fy=fy, cx=cx, cy=cy) + w2c = get_w2c(qvec, tvec) + + render.setup_camera(intrinsics, w2c) + depth = render.render_to_depth_image(z_in_view_space=True) + return np.asarray(depth) # 确保返回numpy数组 + """ + + def _mask_occlusion_gpu(self): + """GPU版本的多相机遮挡检测""" + cameras = read_cameras_text(os.path.join(self.pose_path, "cameras.txt")) + images = read_images_text(os.path.join(self.pose_path, "images.txt")) + + visible_faces_dict = {} + edge_faces_dict = {} + delete_edge_faces_dict = {} + + total_start = time.time() + + for n, img in enumerate(images.values()): + camera = cameras[img.camera_id] + camera_data = { + "qvec": img.qvec, + "tvec": img.tvec, + "fx": camera.params[0], + "fy": camera.params[1], + "cx": camera.params[2], + "cy": camera.params[3], + "width": camera.width, + "height": camera.height, + "name": img.name[:-4] + } + + img_name = img.name[:-4] + print(f"处理图像 {img_name} ({n+1}/{len(images)})") + # if (img_name!="73_8" and img_name!="52_8" and img_name!="62_8"): + # if (img_name!="52_8" and img_name!="62_8"): + # if (img_name!="52_8"): + # continue + + start_time = time.time() + face_visibility, face_edge, face_delete_edge = self._flag_model_gpu(camera_data) + processing_time = time.time() - start_time + + visible_faces = np.where(face_visibility)[0].tolist() + visible_faces_dict[img_name] = visible_faces + edge_faces_dict[img_name] = np.where(face_edge)[0].tolist() + delete_edge_faces_dict[img_name] = np.where(face_delete_edge)[0].tolist() + + print(f"图像 {img_name} 处理完成,耗时: {processing_time:.2f}秒,可见面数量{len(visible_faces)}") + + total_time = time.time() - total_start + print(f"所有图像处理完成,总耗时: {total_time:.2f}秒") + print(f"平均每张图像耗时: {total_time/len(images):.2f}秒") + + return { + "result1": visible_faces_dict, + "result2": edge_faces_dict, + "result3": delete_edge_faces_dict + } + #""" def _build_face_adjacency(self): if not self.mesh.triangles: @@ -617,53 +986,10 @@ class ModelProcessor: ) print("_flag_model", len(final_occlusion_list), len(self.mesh.vertices), len(self.mesh.vertex_colors)) - """ - vertices = np.asarray(self.mesh.vertices) - vertex_index_map = {tuple(v.tolist()): i for i, v in enumerate(vertices)} - - vertex_colors = np.asarray(self.mesh.vertex_colors) - if face_points==None: - for vertex_id, coord in enumerate(self.mesh.vertices): - if final_occlusion_list[vertex_id]: - vertex_colors[vertex_id] = [1.0, 0.0, 0.0] - - # 保存最终模型 - output_path = f"{self.asset_dir}/mesh_{self.id}_遮挡判断.ply" - o3d.io.write_triangle_mesh(output_path, self.mesh) - print(f"Processing completed. Results saved to {output_path}") - else: - list_id = [] - # sorted_verts = self.sort_vertices(self.mesh.vertices) - sorted_verts =sorted( - (tuple(v.tolist()) for v in vertices), - key=lambda v: (v[0], v[1], v[2]) - ) - dict_s_o = {} - dict_o_s = {} - for sorted_idx, sorted_v in enumerate(sorted_verts): - original_idx = vertex_index_map[sorted_v] - dict_s_o[sorted_idx] = original_idx - dict_o_s[original_idx] = sorted_idx - - for vertex_id, coord in enumerate(self.mesh.vertices): - # print(vertex_id, coord) - if final_occlusion_list[vertex_id]: - if dict_o_s[vertex_id] in face_points: - list_id.append(dict_o_s[vertex_id]) - vertex_colors[vertex_id] = [1.0, 0.0, 0.0] - - write_int_text(list_id, os.path.join(self.pose_path, "face_points_mask.txt")) - - # 保存最终模型 - output_path = f"{self.asset_dir}/mesh_{self.id}_脸部遮挡判断.ply" - o3d.io.write_triangle_mesh(output_path, self.mesh) - print(f"Processing completed. Results saved to {output_path}") - #""" # 获取三角形面片数组 triangles = np.asarray(self.mesh.triangles) face_visible_bitmap = np.zeros(len(triangles), dtype=bool) - # face_edge_bitmap = np.zeros(len(triangles), dtype=bool) # 遍历所有面片 for face_idx, face in enumerate(triangles): @@ -675,175 +1001,12 @@ class ModelProcessor: final_visible_list[v2] ]) - # threshold = 0.5 - # face_edge_bitmap[face_idx] = all([ # any all - # final_vertex_difference_list[v0] < threshold, - # final_vertex_difference_list[v1] < threshold, - # final_vertex_difference_list[v2] < threshold - # ]) - - # return face_visible_bitmap shrunk_visibility = self._shrink_face_visibility(face_visible_bitmap, 6) # 6 10 - # 16,13;13,16;16,16 expanded_visibility = self._expand_face_visibility(face_visible_bitmap, 30) shrunk_visibility2 = self._shrink_face_visibility(face_visible_bitmap, 50) expanded_edge = expanded_visibility & ~shrunk_visibility2 delete_edge = face_visible_bitmap & ~shrunk_visibility - - """ - # 创建顶点可见性映射(基于面片可见性) - vertex_visibility = np.zeros(len(self.mesh.vertices), dtype=bool) - # 遍历所有面片,将可见面片的顶点标记为可见 - for face_idx, face in enumerate(triangles): - # if expanded_edge[face_idx] and face_edge_bitmap[face_idx] : - if delete_edge[face_idx] : - vertex_visibility[face[0]] = True - vertex_visibility[face[1]] = True - vertex_visibility[face[2]] = True - - - vertices = np.asarray(self.mesh.vertices) - vertex_index_map = {tuple(v.tolist()): i for i, v in enumerate(vertices)} - - vertex_colors = np.asarray(self.mesh.vertex_colors) - if face_points==None: - for vertex_id, coord in enumerate(self.mesh.vertices): - if vertex_visibility[vertex_id]: - vertex_colors[vertex_id] = [1.0, 0.0, 0.0] - - # 保存最终模型 - output_path = f"{self.asset_dir}/mesh_{self.id}_edge.ply" - o3d.io.write_triangle_mesh(output_path, self.mesh) - print(f"Processing completed. Results saved to {output_path}") - else: - list_id = [] - # sorted_verts = self.sort_vertices(self.mesh.vertices) - sorted_verts =sorted( - (tuple(v.tolist()) for v in vertices), - key=lambda v: (v[0], v[1], v[2]) - ) - dict_s_o = {} - dict_o_s = {} - for sorted_idx, sorted_v in enumerate(sorted_verts): - original_idx = vertex_index_map[sorted_v] - dict_s_o[sorted_idx] = original_idx - dict_o_s[original_idx] = sorted_idx - - for vertex_id, coord in enumerate(self.mesh.vertices): - # print(vertex_id, coord) - if vertex_visibility[vertex_id]: - if dict_o_s[vertex_id] in face_points: - list_id.append(dict_o_s[vertex_id]) - vertex_colors[vertex_id] = [1.0, 0.0, 0.0] - - # 保存最终模型 - output_path = f"{self.asset_dir}/mesh_{self.id}_edge.ply" - o3d.io.write_triangle_mesh(output_path, self.mesh) - print(f"Processing completed. Results saved to {output_path}") - #""" - - """ - # 创建顶点可见性映射(基于面片可见性) - vertex_visibility = np.zeros(len(self.mesh.vertices), dtype=bool) - # 遍历所有面片,将可见面片的顶点标记为可见 - for face_idx, face in enumerate(triangles): - if expanded_visibility[face_idx]: - vertex_visibility[face[0]] = True - vertex_visibility[face[1]] = True - vertex_visibility[face[2]] = True - - - vertices = np.asarray(self.mesh.vertices) - vertex_index_map = {tuple(v.tolist()): i for i, v in enumerate(vertices)} - - vertex_colors = np.asarray(self.mesh.vertex_colors) - if face_points==None: - for vertex_id, coord in enumerate(self.mesh.vertices): - if vertex_visibility[vertex_id]: - vertex_colors[vertex_id] = [1.0, 0.0, 0.0] - - # 保存最终模型 - output_path = f"{self.asset_dir}/mesh_{self.id}_expanded.ply" - o3d.io.write_triangle_mesh(output_path, self.mesh) - print(f"Processing completed. Results saved to {output_path}") - else: - list_id = [] - # sorted_verts = self.sort_vertices(self.mesh.vertices) - sorted_verts =sorted( - (tuple(v.tolist()) for v in vertices), - key=lambda v: (v[0], v[1], v[2]) - ) - dict_s_o = {} - dict_o_s = {} - for sorted_idx, sorted_v in enumerate(sorted_verts): - original_idx = vertex_index_map[sorted_v] - dict_s_o[sorted_idx] = original_idx - dict_o_s[original_idx] = sorted_idx - - for vertex_id, coord in enumerate(self.mesh.vertices): - # print(vertex_id, coord) - if vertex_visibility[vertex_id]: - if dict_o_s[vertex_id] in face_points: - list_id.append(dict_o_s[vertex_id]) - vertex_colors[vertex_id] = [1.0, 0.0, 0.0] - - # 保存最终模型 - output_path = f"{self.asset_dir}/mesh_{self.id}_expanded.ply" - o3d.io.write_triangle_mesh(output_path, self.mesh) - print(f"Processing completed. Results saved to {output_path}") - #""" - - """ - # 创建顶点可见性映射(基于面片可见性) - vertex_visibility = np.zeros(len(self.mesh.vertices), dtype=bool) - # 遍历所有面片,将可见面片的顶点标记为可见 - for face_idx, face in enumerate(triangles): - if shrunk_visibility2[face_idx]: - vertex_visibility[face[0]] = True - vertex_visibility[face[1]] = True - vertex_visibility[face[2]] = True - - - vertices = np.asarray(self.mesh.vertices) - vertex_index_map = {tuple(v.tolist()): i for i, v in enumerate(vertices)} - - vertex_colors = np.asarray(self.mesh.vertex_colors) - if face_points==None: - for vertex_id, coord in enumerate(self.mesh.vertices): - if vertex_visibility[vertex_id]: - vertex_colors[vertex_id] = [1.0, 0.0, 0.0] - - # 保存最终模型 - output_path = f"{self.asset_dir}/mesh_{self.id}_shrunk.ply" - o3d.io.write_triangle_mesh(output_path, self.mesh) - print(f"Processing completed. Results saved to {output_path}") - else: - list_id = [] - # sorted_verts = self.sort_vertices(self.mesh.vertices) - sorted_verts =sorted( - (tuple(v.tolist()) for v in vertices), - key=lambda v: (v[0], v[1], v[2]) - ) - dict_s_o = {} - dict_o_s = {} - for sorted_idx, sorted_v in enumerate(sorted_verts): - original_idx = vertex_index_map[sorted_v] - dict_s_o[sorted_idx] = original_idx - dict_o_s[original_idx] = sorted_idx - - for vertex_id, coord in enumerate(self.mesh.vertices): - # print(vertex_id, coord) - if vertex_visibility[vertex_id]: - if dict_o_s[vertex_id] in face_points: - list_id.append(dict_o_s[vertex_id]) - vertex_colors[vertex_id] = [1.0, 0.0, 0.0] - - # 保存最终模型 - output_path = f"{self.asset_dir}/mesh_{self.id}_shrunk.ply" - o3d.io.write_triangle_mesh(output_path, self.mesh) - print(f"Processing completed. Results saved to {output_path}") - #""" return shrunk_visibility, expanded_edge, delete_edge @@ -976,28 +1139,14 @@ class ModelProcessor: images = read_images_text(os.path.join(self.pose_path, "images.txt")) camera_data = {} - """ - for img in images.values(): - if self.mask_image == img.name[:-4]: - camera = cameras[img.camera_id] - camera_data = { - "qvec": img.qvec, - "tvec": img.tvec, - "fx": camera.params[0], - "fy": camera.params[1], - "cx": camera.params[2], - "cy": camera.params[3], - "width": camera.width, - "height": camera.height, - "name": img.name[:-4] - } - return self._flag_model(camera_data, None) - """ countour_faces_dict = {} visible_faces_dict = {} edge_faces_dict = {} delete_edge_faces_dict = {} + + total_start = time.time() + n = 0 for img in images.values(): camera = cameras[img.camera_id] @@ -1012,22 +1161,29 @@ class ModelProcessor: "height": camera.height, "name": img.name[:-4] } - img_name = img.name[:-4] - print("img_name=", img_name, n) + img_name = img.name[:-4] # if (img_name!="73_8" and img_name!="52_8" and img_name!="62_8"): # if (img_name!="52_8" and img_name!="62_8"): # if (img_name!="52_8"): # continue - # face_visibility2, face_contour = self._flag_contour(camera_data, None) - # countour_faces_dict[img.name[:-4]] = np.where(face_contour)[0].tolist() + + start_time = time.time() face_visibility, face_edge, face_delete_edge = self._flag_model(camera_data, None) - visible_faces_dict[img.name[:-4]] = np.where(face_visibility)[0].tolist() + processing_time = time.time() - start_time + + visible_faces = np.where(face_visibility)[0].tolist() + visible_faces_dict[img.name[:-4]] = visible_faces edge_faces_dict[img.name[:-4]] = np.where(face_edge)[0].tolist() delete_edge_faces_dict[img.name[:-4]] = np.where(face_delete_edge)[0].tolist() n += 1 + + print(f"图像={img_name},耗时={processing_time:.2f}秒,可见面数={len(visible_faces)}") + + total_time = time.time() - total_start + print(f"所有图像处理完成,总耗时: {total_time:.2f}秒") + print(f"平均每张图像耗时: {total_time/len(images):.2f}秒") return {"result1": visible_faces_dict, "result2": edge_faces_dict, "result3": delete_edge_faces_dict} - # return {"result1": visible_faces_dict, "result2": countour_faces_dict} def process(self): @@ -1037,8 +1193,8 @@ class ModelProcessor: try: # 处理物理相机生成遮挡判断 - # self._mask_face_occlusion() - return self._mask_occlusion() + # return self._mask_occlusion() + return self._mask_occlusion_gpu() except Exception as e: print(f"Error during processing: {str(e)}")