''' OpenMVS python utilities. E.g., from MvsUtils import loadDMAP, loadMVSInterface ''' import numpy as np def loadDMAP(dmap_path): with open(dmap_path, 'rb') as dmap: file_type = dmap.read(2).decode() content_type = np.frombuffer(dmap.read(1), dtype=np.dtype('B')) reserve = np.frombuffer(dmap.read(1), dtype=np.dtype('B')) has_depth = content_type > 0 has_normal = content_type in [3, 7, 11, 15] has_conf = content_type in [5, 7, 13, 15] has_views = content_type in [9, 11, 13, 15] image_width, image_height = np.frombuffer(dmap.read(8), dtype=np.dtype('I')) depth_width, depth_height = np.frombuffer(dmap.read(8), dtype=np.dtype('I')) if (file_type != 'DR' or has_depth == False or depth_width <= 0 or depth_height <= 0 or image_width < depth_width or image_height < depth_height): print('error: opening file \'{}\' for reading depth-data'.format(dmap_path)) return depth_min, depth_max = np.frombuffer(dmap.read(8), dtype=np.dtype('f')) file_name_size = np.frombuffer(dmap.read(2), dtype=np.dtype('H'))[0] file_name = dmap.read(file_name_size).decode() view_ids_size = np.frombuffer(dmap.read(4), dtype=np.dtype('I'))[0] reference_view_id, *neighbor_view_ids = np.frombuffer(dmap.read(4 * view_ids_size), dtype=np.dtype('I')) K = np.frombuffer(dmap.read(72), dtype=np.dtype('d')).reshape(3, 3) R = np.frombuffer(dmap.read(72), dtype=np.dtype('d')).reshape(3, 3) C = np.frombuffer(dmap.read(24), dtype=np.dtype('d')) data = { 'has_normal': has_normal, 'has_conf': has_conf, 'has_views': has_views, 'image_width': image_width, 'image_height': image_height, 'depth_width': depth_width, 'depth_height': depth_height, 'depth_min': depth_min, 'depth_max': depth_max, 'file_name': file_name, 'reference_view_id': reference_view_id, 'neighbor_view_ids': neighbor_view_ids, 'K': K, 'R': R, 'C': C } map_size = depth_width * depth_height depth_map = np.frombuffer(dmap.read(4 * map_size), dtype=np.dtype('f')).reshape(depth_height, depth_width) data.update({'depth_map': depth_map}) if has_normal: normal_map = np.frombuffer(dmap.read(4 * map_size * 3), dtype=np.dtype('f')).reshape(depth_height, depth_width, 3) data.update({'normal_map': normal_map}) if has_conf: confidence_map = np.frombuffer(dmap.read(4 * map_size), dtype=np.dtype('f')).reshape(depth_height, depth_width) data.update({'confidence_map': confidence_map}) if has_views: views_map = np.frombuffer(dmap.read(map_size * 4), dtype=np.dtype('B')).reshape(depth_height, depth_width, 4) data.update({'views_map': views_map}) return data def loadMVSInterface(archive_path): with open(archive_path, 'rb') as mvs: archive_type = mvs.read(4).decode() version = np.frombuffer(mvs.read(4), dtype=np.dtype('I')).tolist()[0] reserve = np.frombuffer(mvs.read(4), dtype=np.dtype('I')) if archive_type != 'MVSI': print('error: opening file \'{}\''.format(archive_path)) return data = { 'project_stream': archive_type, 'project_stream_version': version, 'platforms': [], 'images': [], 'vertices': [], 'vertices_normal': [], 'vertices_color': [] } platforms_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] for platform_index in range(platforms_size): platform_name_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] platform_name = mvs.read(platform_name_size).decode() data['platforms'].append({'name': platform_name, 'cameras': []}) cameras_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] for camera_index in range(cameras_size): camera_name_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] camera_name = mvs.read(camera_name_size).decode() data['platforms'][platform_index]['cameras'].append({'name': camera_name}) if version > 3: band_name_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] band_name = mvs.read(band_name_size).decode() data['platforms'][platform_index]['cameras'][camera_index].update({'band_name': band_name}) if version > 0: width, height = np.frombuffer(mvs.read(8), dtype=np.dtype('I')).tolist() data['platforms'][platform_index]['cameras'][camera_index].update({'width': width, 'height': height}) K = np.asarray(np.frombuffer(mvs.read(72), dtype=np.dtype('d'))).reshape(3, 3).tolist() data['platforms'][platform_index]['cameras'][camera_index].update({'K': K, 'poses': []}) identity_matrix = np.asarray(np.frombuffer(mvs.read(96), dtype=np.dtype('d'))).reshape(4, 3) poses_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] for _ in range(poses_size): R = np.asarray(np.frombuffer(mvs.read(72), dtype=np.dtype('d'))).reshape(3, 3).tolist() C = np.asarray(np.frombuffer(mvs.read(24), dtype=np.dtype('d'))).tolist() data['platforms'][platform_index]['cameras'][camera_index]['poses'].append({'R': R, 'C': C}) images_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] for image_index in range(images_size): name_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] name = mvs.read(name_size).decode() data['images'].append({'name': name}) if version > 4: mask_name_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] mask_name = mvs.read(mask_name_size).decode() data['images'][image_index].update({'mask_name': mask_name}) platform_id, camera_id, pose_id = np.frombuffer(mvs.read(12), dtype=np.dtype('I')).tolist() data['images'][image_index].update({'platform_id': platform_id, 'camera_id': camera_id, 'pose_id': pose_id}) if version > 2: id = np.frombuffer(mvs.read(4), dtype=np.dtype('I')).tolist()[0] data['images'][image_index].update({'id': id}) if version > 6: min_depth, avg_depth, max_depth = np.frombuffer(mvs.read(12), dtype=np.dtype('f')).tolist() data['images'][image_index].update({'min_depth': min_depth, 'avg_depth': avg_depth, 'max_depth': max_depth, 'view_scores': []}) view_score_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] for _ in range(view_score_size): id, points = np.frombuffer(mvs.read(8), dtype=np.dtype('I')).tolist() scale, angle, area, score = np.frombuffer(mvs.read(16), dtype=np.dtype('f')).tolist() data['images'][image_index]['view_scores'].append({'id': id, 'points': points, 'scale': scale, 'angle': angle, 'area': area, 'score': score}) vertices_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] for vertex_index in range(vertices_size): X = np.frombuffer(mvs.read(12), dtype=np.dtype('f')).tolist() data['vertices'].append({'X': X, 'views': []}) views_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] for _ in range(views_size): image_id = np.frombuffer(mvs.read(4), dtype=np.dtype('I')).tolist()[0] confidence = np.frombuffer(mvs.read(4), dtype=np.dtype('f')).tolist()[0] data['vertices'][vertex_index]['views'].append({'image_id': image_id, 'confidence': confidence}) vertices_normal_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] for _ in range(vertices_normal_size): normal = np.frombuffer(mvs.read(12), dtype=np.dtype('f')).tolist() data['vertices_normal'].append(normal) vertices_color_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] for _ in range(vertices_color_size): color = np.frombuffer(mvs.read(3), dtype=np.dtype('B')).tolist() data['vertices_color'].append(color) if version > 0: data.update({'lines': [], 'lines_normal': [], 'lines_color': []}) lines_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] for line_index in range(lines_size): pt1 = np.frombuffer(mvs.read(12), dtype=np.dtype('f')).tolist() pt2 = np.frombuffer(mvs.read(12), dtype=np.dtype('f')).tolist() data['lines'].append({'pt1': pt1, 'pt2': pt2, 'views': []}) views_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] for _ in range(views_size): image_id = np.frombuffer(mvs.read(4), dtype=np.dtype('I')).tolist()[0] confidence = np.frombuffer(mvs.read(4), dtype=np.dtype('f')).tolist()[0] data['lines'][line_index]['views'].append({'image_id': image_id, 'confidence': confidence}) lines_normal_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] for _ in range(lines_normal_size): normal = np.frombuffer(mvs.read(12), dtype=np.dtype('f')).tolist() data['lines_normal'].append(normal) lines_color_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0] for _ in range(lines_color_size): color = np.frombuffer(mvs.read(3), dtype=np.dtype('B')).tolist() data['lines_color'].append(color) if version > 1: transform = np.frombuffer(mvs.read(128), dtype=np.dtype('d')).reshape(4, 4).tolist() data.update({'transform': transform}) if version > 5: rot = np.frombuffer(mvs.read(72), dtype=np.dtype('d')).reshape(3, 3).tolist() pt_min = np.frombuffer(mvs.read(24), dtype=np.dtype('d')).tolist() pt_max = np.frombuffer(mvs.read(24), dtype=np.dtype('d')).tolist() data.update({'obb': {'rot': rot, 'pt_min': pt_min, 'pt_max': pt_max}}) return data