You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
262 lines
9.0 KiB
262 lines
9.0 KiB
// This file is part of Eigen, a lightweight C++ template library |
|
// for linear algebra. |
|
// |
|
// Copyright (C) 2009 Mark Borgerding mark a borgerding net |
|
// |
|
// This Source Code Form is subject to the terms of the Mozilla |
|
// Public License v. 2.0. If a copy of the MPL was not distributed |
|
// with this file, You can obtain one at the mozilla.org home page |
|
|
|
#include "main.h" |
|
#include <unsupported/Eigen/FFT> |
|
|
|
template <typename T> |
|
std::complex<T> RandomCpx() { return std::complex<T>( (T)(rand()/(T)RAND_MAX - .5), (T)(rand()/(T)RAND_MAX - .5) ); } |
|
|
|
using namespace std; |
|
using namespace Eigen; |
|
|
|
|
|
template < typename T> |
|
complex<long double> promote(complex<T> x) { return complex<long double>((long double)x.real(),(long double)x.imag()); } |
|
|
|
complex<long double> promote(float x) { return complex<long double>((long double)x); } |
|
complex<long double> promote(double x) { return complex<long double>((long double)x); } |
|
complex<long double> promote(long double x) { return complex<long double>((long double)x); } |
|
|
|
|
|
template <typename VT1,typename VT2> |
|
long double fft_rmse( const VT1 & fftbuf,const VT2 & timebuf) |
|
{ |
|
long double totalpower=0; |
|
long double difpower=0; |
|
long double pi = acos((long double)-1 ); |
|
for (size_t k0=0;k0<(size_t)fftbuf.size();++k0) { |
|
complex<long double> acc = 0; |
|
long double phinc = (long double)(-2.)*k0* pi / timebuf.size(); |
|
for (size_t k1=0;k1<(size_t)timebuf.size();++k1) { |
|
acc += promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) ); |
|
} |
|
totalpower += numext::abs2(acc); |
|
complex<long double> x = promote(fftbuf[k0]); |
|
complex<long double> dif = acc - x; |
|
difpower += numext::abs2(dif); |
|
//cerr << k0 << "\t" << acc << "\t" << x << "\t" << sqrt(numext::abs2(dif)) << endl; |
|
} |
|
cerr << "rmse:" << sqrt(difpower/totalpower) << endl; |
|
return sqrt(difpower/totalpower); |
|
} |
|
|
|
template <typename VT1,typename VT2> |
|
long double dif_rmse( const VT1 buf1,const VT2 buf2) |
|
{ |
|
long double totalpower=0; |
|
long double difpower=0; |
|
size_t n = (min)( buf1.size(),buf2.size() ); |
|
for (size_t k=0;k<n;++k) { |
|
totalpower += (long double)((numext::abs2( buf1[k] ) + numext::abs2(buf2[k]) )/2); |
|
difpower += (long double)(numext::abs2(buf1[k] - buf2[k])); |
|
} |
|
return sqrt(difpower/totalpower); |
|
} |
|
|
|
enum { StdVectorContainer, EigenVectorContainer }; |
|
|
|
template<int Container, typename Scalar> struct VectorType; |
|
|
|
template<typename Scalar> struct VectorType<StdVectorContainer,Scalar> |
|
{ |
|
typedef vector<Scalar> type; |
|
}; |
|
|
|
template<typename Scalar> struct VectorType<EigenVectorContainer,Scalar> |
|
{ |
|
typedef Matrix<Scalar,Dynamic,1> type; |
|
}; |
|
|
|
template <int Container, typename T> |
|
void test_scalar_generic(int nfft) |
|
{ |
|
typedef typename FFT<T>::Complex Complex; |
|
typedef typename FFT<T>::Scalar Scalar; |
|
typedef typename VectorType<Container,Scalar>::type ScalarVector; |
|
typedef typename VectorType<Container,Complex>::type ComplexVector; |
|
|
|
FFT<T> fft; |
|
ScalarVector tbuf(nfft); |
|
ComplexVector freqBuf; |
|
for (int k=0;k<nfft;++k) |
|
tbuf[k]= (T)( rand()/(double)RAND_MAX - .5); |
|
|
|
// make sure it DOESN'T give the right full spectrum answer |
|
// if we've asked for half-spectrum |
|
fft.SetFlag(fft.HalfSpectrum ); |
|
fft.fwd( freqBuf,tbuf); |
|
VERIFY((size_t)freqBuf.size() == (size_t)( (nfft>>1)+1) ); |
|
VERIFY( T(fft_rmse(freqBuf,tbuf)) < test_precision<T>() );// gross check |
|
|
|
fft.ClearFlag(fft.HalfSpectrum ); |
|
fft.fwd( freqBuf,tbuf); |
|
VERIFY( (size_t)freqBuf.size() == (size_t)nfft); |
|
VERIFY( T(fft_rmse(freqBuf,tbuf)) < test_precision<T>() );// gross check |
|
|
|
if (nfft&1) |
|
return; // odd FFTs get the wrong size inverse FFT |
|
|
|
ScalarVector tbuf2; |
|
fft.inv( tbuf2 , freqBuf); |
|
VERIFY( T(dif_rmse(tbuf,tbuf2)) < test_precision<T>() );// gross check |
|
|
|
|
|
// verify that the Unscaled flag takes effect |
|
ScalarVector tbuf3; |
|
fft.SetFlag(fft.Unscaled); |
|
|
|
fft.inv( tbuf3 , freqBuf); |
|
|
|
for (int k=0;k<nfft;++k) |
|
tbuf3[k] *= T(1./nfft); |
|
|
|
|
|
//for (size_t i=0;i<(size_t) tbuf.size();++i) |
|
// cout << "freqBuf=" << freqBuf[i] << " in2=" << tbuf3[i] << " - in=" << tbuf[i] << " => " << (tbuf3[i] - tbuf[i] ) << endl; |
|
|
|
VERIFY( T(dif_rmse(tbuf,tbuf3)) < test_precision<T>() );// gross check |
|
|
|
// verify that ClearFlag works |
|
fft.ClearFlag(fft.Unscaled); |
|
fft.inv( tbuf2 , freqBuf); |
|
VERIFY( T(dif_rmse(tbuf,tbuf2)) < test_precision<T>() );// gross check |
|
} |
|
|
|
template <typename T> |
|
void test_scalar(int nfft) |
|
{ |
|
test_scalar_generic<StdVectorContainer,T>(nfft); |
|
//test_scalar_generic<EigenVectorContainer,T>(nfft); |
|
} |
|
|
|
|
|
template <int Container, typename T> |
|
void test_complex_generic(int nfft) |
|
{ |
|
typedef typename FFT<T>::Complex Complex; |
|
typedef typename VectorType<Container,Complex>::type ComplexVector; |
|
|
|
FFT<T> fft; |
|
|
|
ComplexVector inbuf(nfft); |
|
ComplexVector outbuf; |
|
ComplexVector buf3; |
|
for (int k=0;k<nfft;++k) |
|
inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) ); |
|
fft.fwd( outbuf , inbuf); |
|
|
|
VERIFY( T(fft_rmse(outbuf,inbuf)) < test_precision<T>() );// gross check |
|
fft.inv( buf3 , outbuf); |
|
|
|
VERIFY( T(dif_rmse(inbuf,buf3)) < test_precision<T>() );// gross check |
|
|
|
// verify that the Unscaled flag takes effect |
|
ComplexVector buf4; |
|
fft.SetFlag(fft.Unscaled); |
|
fft.inv( buf4 , outbuf); |
|
for (int k=0;k<nfft;++k) |
|
buf4[k] *= T(1./nfft); |
|
VERIFY( T(dif_rmse(inbuf,buf4)) < test_precision<T>() );// gross check |
|
|
|
// verify that ClearFlag works |
|
fft.ClearFlag(fft.Unscaled); |
|
fft.inv( buf3 , outbuf); |
|
VERIFY( T(dif_rmse(inbuf,buf3)) < test_precision<T>() );// gross check |
|
} |
|
|
|
template <typename T> |
|
void test_complex(int nfft) |
|
{ |
|
test_complex_generic<StdVectorContainer,T>(nfft); |
|
test_complex_generic<EigenVectorContainer,T>(nfft); |
|
} |
|
/* |
|
template <typename T,int nrows,int ncols> |
|
void test_complex2d() |
|
{ |
|
typedef typename Eigen::FFT<T>::Complex Complex; |
|
FFT<T> fft; |
|
Eigen::Matrix<Complex,nrows,ncols> src,src2,dst,dst2; |
|
|
|
src = Eigen::Matrix<Complex,nrows,ncols>::Random(); |
|
//src = Eigen::Matrix<Complex,nrows,ncols>::Identity(); |
|
|
|
for (int k=0;k<ncols;k++) { |
|
Eigen::Matrix<Complex,nrows,1> tmpOut; |
|
fft.fwd( tmpOut,src.col(k) ); |
|
dst2.col(k) = tmpOut; |
|
} |
|
|
|
for (int k=0;k<nrows;k++) { |
|
Eigen::Matrix<Complex,1,ncols> tmpOut; |
|
fft.fwd( tmpOut, dst2.row(k) ); |
|
dst2.row(k) = tmpOut; |
|
} |
|
|
|
fft.fwd2(dst.data(),src.data(),ncols,nrows); |
|
fft.inv2(src2.data(),dst.data(),ncols,nrows); |
|
VERIFY( (src-src2).norm() < test_precision<T>() ); |
|
VERIFY( (dst-dst2).norm() < test_precision<T>() ); |
|
} |
|
*/ |
|
|
|
|
|
void test_return_by_value(int len) |
|
{ |
|
VectorXf in; |
|
VectorXf in1; |
|
in.setRandom( len ); |
|
VectorXcf out1,out2; |
|
FFT<float> fft; |
|
|
|
fft.SetFlag(fft.HalfSpectrum ); |
|
|
|
fft.fwd(out1,in); |
|
out2 = fft.fwd(in); |
|
VERIFY( (out1-out2).norm() < test_precision<float>() ); |
|
in1 = fft.inv(out1); |
|
VERIFY( (in1-in).norm() < test_precision<float>() ); |
|
} |
|
|
|
EIGEN_DECLARE_TEST(FFTW) |
|
{ |
|
CALL_SUBTEST( test_return_by_value(32) ); |
|
//CALL_SUBTEST( ( test_complex2d<float,4,8> () ) ); CALL_SUBTEST( ( test_complex2d<double,4,8> () ) ); |
|
//CALL_SUBTEST( ( test_complex2d<long double,4,8> () ) ); |
|
CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) ); |
|
CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) ); |
|
CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) ); |
|
CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) ); |
|
CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) ); |
|
CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) ); |
|
CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) ); |
|
|
|
CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) ); |
|
CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) ); |
|
CALL_SUBTEST( test_scalar<float>(50) ); CALL_SUBTEST( test_scalar<double>(50) ); |
|
CALL_SUBTEST( test_scalar<float>(256) ); CALL_SUBTEST( test_scalar<double>(256) ); |
|
CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) ); |
|
|
|
#ifdef EIGEN_HAS_FFTWL |
|
CALL_SUBTEST( test_complex<long double>(32) ); |
|
CALL_SUBTEST( test_complex<long double>(256) ); |
|
CALL_SUBTEST( test_complex<long double>(3*8) ); |
|
CALL_SUBTEST( test_complex<long double>(5*32) ); |
|
CALL_SUBTEST( test_complex<long double>(2*3*4) ); |
|
CALL_SUBTEST( test_complex<long double>(2*3*4*5) ); |
|
CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) ); |
|
|
|
CALL_SUBTEST( test_scalar<long double>(32) ); |
|
CALL_SUBTEST( test_scalar<long double>(45) ); |
|
CALL_SUBTEST( test_scalar<long double>(50) ); |
|
CALL_SUBTEST( test_scalar<long double>(256) ); |
|
CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) ); |
|
#endif |
|
}
|
|
|