You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
110 lines
2.9 KiB
110 lines
2.9 KiB
// This file is part of Eigen, a lightweight C++ template library |
|
// for linear algebra. |
|
// |
|
// Copyright (C) 2016 Igor Babuschkin <igor@babuschk.in> |
|
// |
|
// This Source Code Form is subject to the terms of the Mozilla |
|
// Public License v. 2.0. If a copy of the MPL was not distributed |
|
// with this file, You can obtain one at the mozilla.org home page |
|
|
|
#include "main.h" |
|
#include <limits> |
|
#include <numeric> |
|
#include <Eigen/CXX11/Tensor> |
|
|
|
using Eigen::Tensor; |
|
|
|
template <int DataLayout, typename Type=float, bool Exclusive = false> |
|
static void test_1d_scan() |
|
{ |
|
int size = 50; |
|
Tensor<Type, 1, DataLayout> tensor(size); |
|
tensor.setRandom(); |
|
Tensor<Type, 1, DataLayout> result = tensor.cumsum(0, Exclusive); |
|
|
|
VERIFY_IS_EQUAL(tensor.dimension(0), result.dimension(0)); |
|
|
|
float accum = 0; |
|
for (int i = 0; i < size; i++) { |
|
if (Exclusive) { |
|
VERIFY_IS_EQUAL(result(i), accum); |
|
accum += tensor(i); |
|
} else { |
|
accum += tensor(i); |
|
VERIFY_IS_EQUAL(result(i), accum); |
|
} |
|
} |
|
|
|
accum = 1; |
|
result = tensor.cumprod(0, Exclusive); |
|
for (int i = 0; i < size; i++) { |
|
if (Exclusive) { |
|
VERIFY_IS_EQUAL(result(i), accum); |
|
accum *= tensor(i); |
|
} else { |
|
accum *= tensor(i); |
|
VERIFY_IS_EQUAL(result(i), accum); |
|
} |
|
} |
|
} |
|
|
|
template <int DataLayout, typename Type=float> |
|
static void test_4d_scan() |
|
{ |
|
int size = 5; |
|
Tensor<Type, 4, DataLayout> tensor(size, size, size, size); |
|
tensor.setRandom(); |
|
|
|
Tensor<Type, 4, DataLayout> result(size, size, size, size); |
|
|
|
result = tensor.cumsum(0); |
|
float accum = 0; |
|
for (int i = 0; i < size; i++) { |
|
accum += tensor(i, 1, 2, 3); |
|
VERIFY_IS_EQUAL(result(i, 1, 2, 3), accum); |
|
} |
|
result = tensor.cumsum(1); |
|
accum = 0; |
|
for (int i = 0; i < size; i++) { |
|
accum += tensor(1, i, 2, 3); |
|
VERIFY_IS_EQUAL(result(1, i, 2, 3), accum); |
|
} |
|
result = tensor.cumsum(2); |
|
accum = 0; |
|
for (int i = 0; i < size; i++) { |
|
accum += tensor(1, 2, i, 3); |
|
VERIFY_IS_EQUAL(result(1, 2, i, 3), accum); |
|
} |
|
result = tensor.cumsum(3); |
|
accum = 0; |
|
for (int i = 0; i < size; i++) { |
|
accum += tensor(1, 2, 3, i); |
|
VERIFY_IS_EQUAL(result(1, 2, 3, i), accum); |
|
} |
|
} |
|
|
|
template <int DataLayout> |
|
static void test_tensor_maps() { |
|
int inputs[20]; |
|
TensorMap<Tensor<int, 1, DataLayout> > tensor_map(inputs, 20); |
|
tensor_map.setRandom(); |
|
|
|
Tensor<int, 1, DataLayout> result = tensor_map.cumsum(0); |
|
|
|
int accum = 0; |
|
for (int i = 0; i < 20; ++i) { |
|
accum += tensor_map(i); |
|
VERIFY_IS_EQUAL(result(i), accum); |
|
} |
|
} |
|
|
|
EIGEN_DECLARE_TEST(cxx11_tensor_scan) { |
|
CALL_SUBTEST((test_1d_scan<ColMajor, float, true>())); |
|
CALL_SUBTEST((test_1d_scan<ColMajor, float, false>())); |
|
CALL_SUBTEST((test_1d_scan<RowMajor, float, true>())); |
|
CALL_SUBTEST((test_1d_scan<RowMajor, float, false>())); |
|
CALL_SUBTEST(test_4d_scan<ColMajor>()); |
|
CALL_SUBTEST(test_4d_scan<RowMajor>()); |
|
CALL_SUBTEST(test_tensor_maps<ColMajor>()); |
|
CALL_SUBTEST(test_tensor_maps<RowMajor>()); |
|
}
|
|
|