You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
67 lines
2.1 KiB
67 lines
2.1 KiB
// This file is part of Eigen, a lightweight C++ template library |
|
// for linear algebra. |
|
// |
|
// Copyright (C) 2009-2011 Jitse Niesen <jitse@maths.leeds.ac.uk> |
|
// |
|
// This Source Code Form is subject to the terms of the Mozilla |
|
// Public License v. 2.0. If a copy of the MPL was not distributed |
|
// with this file, You can obtain one at the mozilla.org home page |
|
|
|
#include "main.h" |
|
#include <unsupported/Eigen/MatrixFunctions> |
|
|
|
// For complex matrices, any matrix is fine. |
|
template<typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> |
|
struct processTriangularMatrix |
|
{ |
|
static void run(MatrixType&, MatrixType&, const MatrixType&) |
|
{ } |
|
}; |
|
|
|
// For real matrices, make sure none of the eigenvalues are negative. |
|
template<typename MatrixType> |
|
struct processTriangularMatrix<MatrixType,0> |
|
{ |
|
static void run(MatrixType& m, MatrixType& T, const MatrixType& U) |
|
{ |
|
const Index size = m.cols(); |
|
|
|
for (Index i=0; i < size; ++i) { |
|
if (i == size - 1 || T.coeff(i+1,i) == 0) |
|
T.coeffRef(i,i) = std::abs(T.coeff(i,i)); |
|
else |
|
++i; |
|
} |
|
m = U * T * U.transpose(); |
|
} |
|
}; |
|
|
|
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> |
|
struct generateTestMatrix; |
|
|
|
template <typename MatrixType> |
|
struct generateTestMatrix<MatrixType,0> |
|
{ |
|
static void run(MatrixType& result, typename MatrixType::Index size) |
|
{ |
|
result = MatrixType::Random(size, size); |
|
RealSchur<MatrixType> schur(result); |
|
MatrixType T = schur.matrixT(); |
|
processTriangularMatrix<MatrixType>::run(result, T, schur.matrixU()); |
|
} |
|
}; |
|
|
|
template <typename MatrixType> |
|
struct generateTestMatrix<MatrixType,1> |
|
{ |
|
static void run(MatrixType& result, typename MatrixType::Index size) |
|
{ |
|
result = MatrixType::Random(size, size); |
|
} |
|
}; |
|
|
|
template <typename Derived, typename OtherDerived> |
|
typename Derived::RealScalar relerr(const MatrixBase<Derived>& A, const MatrixBase<OtherDerived>& B) |
|
{ |
|
return std::sqrt((A - B).cwiseAbs2().sum() / (std::min)(A.cwiseAbs2().sum(), B.cwiseAbs2().sum())); |
|
}
|
|
|