You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
703 lines
20 KiB
703 lines
20 KiB
/**************************************************************************** |
|
* VCGLib o o * |
|
* Visual and Computer Graphics Library o o * |
|
* _ O _ * |
|
* Copyright(C) 2004-2016 \/)\/ * |
|
* Visual Computing Lab /\/| * |
|
* ISTI - Italian National Research Council | * |
|
* \ * |
|
* All rights reserved. * |
|
* * |
|
* This program is free software; you can redistribute it and/or modify * |
|
* it under the terms of the GNU General Public License as published by * |
|
* the Free Software Foundation; either version 2 of the License, or * |
|
* (at your option) any later version. * |
|
* * |
|
* This program is distributed in the hope that it will be useful, * |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of * |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * |
|
* for more details. * |
|
* * |
|
****************************************************************************/ |
|
#ifndef __VCG_TRI_UPDATE_SELECTION |
|
#define __VCG_TRI_UPDATE_SELECTION |
|
|
|
#include <deque> |
|
|
|
#include <vcg/complex/base.h> |
|
#include <vcg/simplex/face/topology.h> |
|
|
|
#include "flag.h" |
|
|
|
namespace vcg { |
|
namespace tri { |
|
/// \ingroup trimesh |
|
/// \brief A stack for saving and restoring selection. |
|
/** |
|
This class is used to save the current selection onto a stack for later use. |
|
\todo it should be generalized to other attributes with a templated approach. |
|
*/ |
|
template <class ComputeMeshType> |
|
class SelectionStack |
|
{ |
|
typedef typename ComputeMeshType::template PerVertexAttributeHandle< bool > vsHandle; |
|
typedef typename ComputeMeshType::template PerEdgeAttributeHandle< bool > esHandle; |
|
typedef typename ComputeMeshType::template PerFaceAttributeHandle< bool > fsHandle; |
|
typedef typename ComputeMeshType::template PerTetraAttributeHandle< bool > tsHandle; |
|
|
|
|
|
public: |
|
SelectionStack(ComputeMeshType &m) |
|
{ |
|
_m=&m; |
|
} |
|
|
|
bool push() |
|
{ |
|
vsHandle vsH = Allocator<ComputeMeshType>::template AddPerVertexAttribute< bool >(*_m); |
|
esHandle esH = Allocator<ComputeMeshType>::template AddPerEdgeAttribute< bool > (*_m); |
|
fsHandle fsH = Allocator<ComputeMeshType>::template AddPerFaceAttribute< bool > (*_m); |
|
tsHandle tsH = Allocator<ComputeMeshType>::template AddPerTetraAttribute< bool > (*_m); |
|
typename ComputeMeshType::VertexIterator vi; |
|
for(vi = _m->vert.begin(); vi != _m->vert.end(); ++vi) |
|
if( !(*vi).IsD() ) vsH[*vi] = (*vi).IsS() ; |
|
|
|
typename ComputeMeshType::EdgeIterator ei; |
|
for(ei = _m->edge.begin(); ei != _m->edge.end(); ++ei) |
|
if( !(*ei).IsD() ) esH[*ei] = (*ei).IsS() ; |
|
|
|
typename ComputeMeshType::FaceIterator fi; |
|
for(fi = _m->face.begin(); fi != _m->face.end(); ++fi) |
|
if( !(*fi).IsD() ) fsH[*fi] = (*fi).IsS() ; |
|
|
|
typename ComputeMeshType::TetraIterator ti; |
|
for(ti = _m->tetra.begin(); ti != _m->tetra.end(); ++ti) |
|
if( !(*ti).IsD() ) tsH[*ti] = (*ti).IsS() ; |
|
|
|
vsV.push_back(vsH); |
|
esV.push_back(esH); |
|
fsV.push_back(fsH); |
|
tsV.push_back(tsH); |
|
return true; |
|
} |
|
|
|
bool popOr() |
|
{ |
|
return pop(true,false); |
|
} |
|
|
|
bool popAnd() |
|
{ |
|
return pop(false,true); |
|
} |
|
|
|
/// It restore a saved selection. |
|
/// The process can be done or in a straightforward manner (e.g. selection values are substituted) |
|
/// or preserving selected or unselected elements (e.g. the restoring is combined in OR/AND) |
|
/// |
|
bool pop(bool orFlag=false, bool andFlag=false) |
|
{ |
|
if(vsV.empty()) return false; |
|
if(orFlag && andFlag) return false; |
|
|
|
vsHandle vsH = vsV.back(); |
|
esHandle esH = esV.back(); |
|
fsHandle fsH = fsV.back(); |
|
tsHandle tsH = tsV.back(); |
|
|
|
if(! (Allocator<ComputeMeshType>::IsValidHandle(*_m, vsH))) return false; |
|
|
|
for(auto vi = _m->vert.begin(); vi != _m->vert.end(); ++vi) |
|
if( !(*vi).IsD() ) |
|
{ |
|
if(vsH[*vi]) { |
|
if(!andFlag) (*vi).SetS(); |
|
} else { |
|
if(!orFlag) (*vi).ClearS(); |
|
} |
|
} |
|
|
|
for(auto ei = _m->edge.begin(); ei != _m->edge.end(); ++ei) |
|
if( !(*ei).IsD() ) |
|
{ |
|
if(esH[*ei]) { |
|
if(!andFlag) (*ei).SetS(); |
|
} else { |
|
if(!orFlag) (*ei).ClearS(); |
|
} |
|
} |
|
|
|
|
|
for(auto fi = _m->face.begin(); fi != _m->face.end(); ++fi) |
|
if( !(*fi).IsD() ) |
|
{ |
|
if(fsH[*fi]) { |
|
if(!andFlag) (*fi).SetS(); |
|
} else { |
|
if(!orFlag) (*fi).ClearS(); |
|
} |
|
} |
|
|
|
for (auto ti = _m->tetra.begin(); ti != _m->tetra.end(); ++ti) |
|
if (!(*ti).IsD()) |
|
{ |
|
if (tsH[*ti]) { |
|
if (!andFlag) (*ti).SetS(); |
|
} else { |
|
if (!orFlag) (*ti).ClearS(); |
|
} |
|
} |
|
|
|
Allocator<ComputeMeshType>::template DeletePerVertexAttribute<bool>(*_m,vsH); |
|
Allocator<ComputeMeshType>::template DeletePerEdgeAttribute<bool>(*_m,esH); |
|
Allocator<ComputeMeshType>::template DeletePerFaceAttribute<bool>(*_m,fsH); |
|
Allocator<ComputeMeshType>::template DeletePerTetraAttribute<bool>(*_m,tsH); |
|
|
|
vsV.pop_back(); |
|
esV.pop_back(); |
|
fsV.pop_back(); |
|
tsV.pop_back(); |
|
return true; |
|
} |
|
|
|
private: |
|
ComputeMeshType *_m; |
|
std::vector<vsHandle> vsV; |
|
std::vector<esHandle> esV; |
|
std::vector<fsHandle> fsV; |
|
std::vector<tsHandle> tsV; |
|
|
|
}; |
|
|
|
/// \ingroup trimesh |
|
|
|
/// \headerfile selection.h vcg/complex/algorithms/update/selection.h |
|
|
|
/// \brief Management, updating and conditional computation of selections (per-vertex, per-edge, and per-face). |
|
/** |
|
This class is used to compute or update the selected bit flag that can be stored in the vertex, edge or face component of a mesh. |
|
*/ |
|
|
|
template <class ComputeMeshType> |
|
class UpdateSelection |
|
{ |
|
|
|
public: |
|
typedef ComputeMeshType MeshType; |
|
typedef typename MeshType::ScalarType ScalarType; |
|
typedef typename MeshType::VertexType VertexType; |
|
typedef typename MeshType::VertexPointer VertexPointer; |
|
typedef typename MeshType::VertexIterator VertexIterator; |
|
typedef typename MeshType::EdgeIterator EdgeIterator; |
|
typedef typename MeshType::EdgeType EdgeType; |
|
typedef typename MeshType::FaceType FaceType; |
|
typedef typename MeshType::FacePointer FacePointer; |
|
typedef typename MeshType::FaceIterator FaceIterator; |
|
typedef typename MeshType::TetraType TetraType; |
|
typedef typename MeshType::TetraPointer TetraPointer; |
|
typedef typename MeshType::TetraIterator TetraIterator; |
|
|
|
typedef typename vcg::Box3<ScalarType> Box3Type; |
|
|
|
/// \brief This function select all the vertices. |
|
static size_t VertexAll(MeshType &m) |
|
{ |
|
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) |
|
if( !(*vi).IsD() ) (*vi).SetS(); |
|
return m.vn; |
|
} |
|
|
|
/// \brief This function select all the edges. |
|
static size_t EdgeAll(MeshType &m) |
|
{ |
|
for(EdgeIterator ei = m.edge.begin(); ei != m.edge.end(); ++ei) |
|
if( !(*ei).IsD() ) (*ei).SetS(); |
|
return m.fn; |
|
} |
|
/// \brief This function select all the faces. |
|
static size_t FaceAll(MeshType &m) |
|
{ |
|
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) |
|
if( !(*fi).IsD() ) (*fi).SetS(); |
|
return m.fn; |
|
} |
|
|
|
/// \brief This function select all the tetras. |
|
static size_t TetraAll (MeshType & m) |
|
{ |
|
ForEachTetra(m, [] (TetraType & t) { |
|
t.SetS(); |
|
}); |
|
|
|
return m.tn; |
|
} |
|
|
|
/// \brief This function clear the selection flag for all the vertices. |
|
static size_t VertexClear(MeshType &m) |
|
{ |
|
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) |
|
if( !(*vi).IsD() ) (*vi).ClearS(); |
|
return 0; |
|
} |
|
|
|
/// \brief This function clears the selection flag for all the edges. |
|
static size_t EdgeClear(MeshType &m) |
|
{ |
|
for(EdgeIterator ei = m.edge.begin(); ei != m.edge.end(); ++ei) |
|
if( !(*ei).IsD() ) (*ei).ClearS(); |
|
return 0; |
|
} |
|
|
|
/// \brief This function clears the selection flag for all the faces. |
|
static size_t FaceClear(MeshType &m) |
|
{ |
|
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) |
|
if( !(*fi).IsD() ) (*fi).ClearS(); |
|
return 0; |
|
} |
|
|
|
/// \brief This function clears the selection flag for all the tetras. |
|
static size_t TetraClear (MeshType & m) |
|
{ |
|
ForEachTetra(m, [] (TetraType & t) { |
|
t.ClearS(); |
|
}); |
|
|
|
return 0; |
|
} |
|
|
|
/// \brief This function clears the selection flag for all the elements of a mesh (vertices, edges, and faces). |
|
static void Clear(MeshType &m) |
|
{ |
|
VertexClear(m); |
|
EdgeClear(m); |
|
FaceClear(m); |
|
TetraClear(m); |
|
} |
|
|
|
/// \brief This function returns the number of selected faces. |
|
static size_t FaceCount(const MeshType &m) |
|
{ |
|
size_t selCnt=0; |
|
ForEachFace(m, [&](const FaceType& f){ |
|
if(f.IsS()) ++selCnt; |
|
}); |
|
return selCnt; |
|
} |
|
|
|
/// \brief This function returns the number of selected edges. |
|
static size_t EdgeCount(const MeshType &m) |
|
{ |
|
size_t selCnt=0; |
|
ForEachEdge(m, [&](const EdgeType& e){ |
|
if(e.IsS()) ++selCnt; |
|
}); |
|
return selCnt; |
|
} |
|
|
|
/// \brief This function returns the number of selected edges according to the FaceEdge Selection bit (the 3 bits stored inside each face). |
|
static size_t FaceEdgeCount(const MeshType &m) |
|
{ |
|
RequireFFAdjacency(m); |
|
size_t selCnt=0; |
|
ForEachFace(m, [&](const FaceType& f){ |
|
for(int i=0;i<f.VN();++i) |
|
{ |
|
if(f.IsFaceEdgeS(i)) ++selCnt; |
|
if(f.IsFaceEdgeS(i) && face::IsBorder(f,i)) ++selCnt; // all FaceEdges are counted twice with the exception of the ones on borders |
|
} |
|
}); |
|
return selCnt/2; |
|
} |
|
|
|
/// \brief This function returns the number of selected vertices. |
|
static size_t VertexCount(const MeshType &m) |
|
{ |
|
size_t selCnt=0; |
|
ForEachVertex(m, [&](const VertexType& v){ |
|
if(v.IsS()) ++selCnt; |
|
}); |
|
return selCnt; |
|
} |
|
|
|
/// \brief This function returns the number of selected tetras. |
|
static size_t TetraCount (const MeshType & m) |
|
{ |
|
size_t selCnt = 0; |
|
ForEachTetra(m, [&] (const TetraType & t) { |
|
if (t.IsS()) ++selCnt; |
|
}); |
|
|
|
return selCnt; |
|
} |
|
/// \brief This function inverts the selection flag for all the faces. |
|
static size_t FaceInvert(MeshType &m) |
|
{ |
|
size_t selCnt=0; |
|
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) |
|
if(!(*fi).IsD()) |
|
{ |
|
if((*fi).IsS()) (*fi).ClearS(); |
|
else { |
|
(*fi).SetS(); |
|
++selCnt; |
|
} |
|
} |
|
return selCnt; |
|
} |
|
|
|
/// \brief This function inverts the selection flag for all the edges. |
|
static size_t EdgeInvert(MeshType &m) |
|
{ |
|
size_t selCnt=0; |
|
for(EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei) |
|
if(!(*ei).IsD()) |
|
{ |
|
if((*ei).IsS()) (*ei).ClearS(); |
|
else { |
|
(*ei).SetS(); |
|
++selCnt; |
|
} |
|
} |
|
return selCnt; |
|
} |
|
|
|
/// \brief This function inverts the selection flag for all the vertices. |
|
static size_t VertexInvert(MeshType &m) |
|
{ |
|
size_t selCnt=0; |
|
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi) |
|
if(!(*vi).IsD()) |
|
{ |
|
if((*vi).IsS()) (*vi).ClearS(); |
|
else { |
|
(*vi).SetS(); |
|
++selCnt; |
|
} |
|
} |
|
return selCnt; |
|
} |
|
|
|
/// \brief This function inverts the selection flag for all the tetras. |
|
static size_t TetraInvert (MeshType & m) |
|
{ |
|
size_t selCnt = 0; |
|
ForEachTetra(m, [&selCnt] (TetraType & t) { |
|
if (t.IsS()) |
|
t.ClearS(); |
|
else |
|
{ |
|
t.SetS(); |
|
++selCnt; |
|
} |
|
}); |
|
|
|
return selCnt; |
|
} |
|
|
|
|
|
/// \brief Select all the vertices that are touched by at least a single selected faces |
|
static size_t VertexFromFaceLoose(MeshType &m, bool preserveSelection=false) |
|
{ |
|
size_t selCnt=0; |
|
|
|
if(!preserveSelection) VertexClear(m); |
|
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) |
|
if( !(*fi).IsD() && (*fi).IsS()) |
|
for(int i = 0; i < (*fi).VN(); ++i) |
|
if( !(*fi).V(i)->IsS()) { (*fi).V(i)->SetS(); ++selCnt; } |
|
return selCnt; |
|
} |
|
|
|
/// \brief Select all the vertices that are touched by at least a single selected edge |
|
static size_t VertexFromEdgeLoose(MeshType &m, bool preserveSelection=false) |
|
{ |
|
size_t selCnt=0; |
|
|
|
if(!preserveSelection) VertexClear(m); |
|
for(EdgeIterator ei = m.edge.begin(); ei != m.edge.end(); ++ei) |
|
if( !(*ei).IsD() && (*ei).IsS()) |
|
{ |
|
if( !(*ei).V(0)->IsS()) { (*ei).V(0)->SetS(); ++selCnt; } |
|
if( !(*ei).V(1)->IsS()) { (*ei).V(1)->SetS(); ++selCnt; } |
|
} |
|
return selCnt; |
|
} |
|
|
|
/// \brief Select ONLY the vertices that are touched ONLY by selected faces |
|
/** In other words this function will select all the vertices having all the faces incident on them selected. |
|
*/ |
|
static size_t VertexFromFaceStrict(MeshType &m, bool preserveSelection=false) |
|
{ |
|
SelectionStack<MeshType> ss(m); |
|
if(preserveSelection) ss.push(); |
|
VertexFromFaceLoose(m); |
|
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) |
|
if( !(*fi).IsD() && !(*fi).IsS()) |
|
for(int i = 0; i < (*fi).VN(); ++i) |
|
(*fi).V(i)->ClearS(); |
|
|
|
if(preserveSelection) ss.popOr(); |
|
return VertexCount(m); |
|
} |
|
|
|
/// \brief Select ONLY the faces with ALL the vertices selected |
|
static size_t FaceFromVertexStrict(MeshType &m, bool preserveSelection=false) |
|
{ |
|
SelectionStack<MeshType> ss(m); |
|
if(preserveSelection) ss.push(); |
|
size_t selCnt=0; |
|
FaceClear(m); |
|
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) |
|
if( !(*fi).IsD()) |
|
{ |
|
bool selFlag=true; |
|
for(int i = 0; i < (*fi).VN(); ++i) |
|
if(!(*fi).V(i)->IsS()) |
|
selFlag =false; |
|
if(selFlag) |
|
{ |
|
(*fi).SetS(); |
|
++selCnt; |
|
} |
|
} |
|
|
|
if(preserveSelection) ss.popOr(); |
|
return selCnt; |
|
} |
|
|
|
/// \brief Select all the faces with at least one selected vertex |
|
static size_t FaceFromVertexLoose(MeshType &m, bool preserveSelection=false) |
|
{ |
|
size_t selCnt=0; |
|
if(!preserveSelection) FaceClear(m); |
|
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) |
|
if( !(*fi).IsD()) |
|
{ |
|
bool selVert=false; |
|
for(int i = 0; i < (*fi).VN(); ++i) |
|
if((*fi).V(i)->IsS()) |
|
selVert=true; |
|
|
|
if(selVert) { |
|
(*fi).SetS(); |
|
++selCnt; |
|
} |
|
} |
|
return selCnt; |
|
} |
|
/// \brief This function dilate the face selection by simply first selecting all the vertices touched by the faces and then all the faces touched by these vertices |
|
/// Note: it destroys the vertex selection. |
|
static size_t FaceDilate(MeshType &m) |
|
{ |
|
tri::UpdateSelection<MeshType>::VertexFromFaceLoose(m); |
|
return tri::UpdateSelection<MeshType>::FaceFromVertexLoose(m); |
|
} |
|
|
|
/// \brief This function erode the face selection by simply first selecting only the vertices completely surrounded by face and then the only faces with all the selected vertices |
|
/// Note: it destroys the vertex selection. |
|
static size_t FaceErode(MeshType &m) |
|
{ |
|
tri::UpdateSelection<MeshType>::VertexFromFaceStrict(m); |
|
return tri::UpdateSelection<MeshType>::FaceFromVertexStrict(m); |
|
} |
|
|
|
|
|
/// \brief This function select the vertices with the border flag set |
|
static size_t VertexFromBorderFlag(MeshType &m, bool preserveSelection=false) |
|
{ |
|
size_t selCnt=0; |
|
if(!preserveSelection) VertexClear(m); |
|
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) |
|
if( !(*vi).IsD() ) |
|
{ |
|
if((*vi).IsB() ) |
|
{ |
|
(*vi).SetS(); |
|
++selCnt; |
|
} |
|
} |
|
return selCnt; |
|
} |
|
|
|
/// \brief This function select the faces that have an edge with the border flag set. |
|
static size_t FaceFromBorderFlag(MeshType &m, bool preserveSelection=false) |
|
{ |
|
tri::RequireTriangularMesh(m); |
|
size_t selCnt=0; |
|
if(!preserveSelection) FaceClear(m); |
|
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) |
|
if( !(*fi).IsD() ) |
|
{ |
|
bool bordFlag=false; |
|
for(int i = 0; i < 3; ++i) |
|
if((*fi).IsB(i)) bordFlag=true; |
|
if(bordFlag) |
|
{ |
|
(*fi).SetS(); |
|
++selCnt; |
|
} |
|
} |
|
return selCnt; |
|
} |
|
|
|
/// \brief This function select the faces that have an edge outside the given range. |
|
/// You can skip the second parameter to choose all the edges smaller than a given lenght |
|
static size_t FaceOutOfRangeEdge(MeshType &m, ScalarType MinEdgeThr, ScalarType MaxEdgeThr=(std::numeric_limits<ScalarType>::max)(), bool preserveSelection=false) |
|
{ |
|
if(!preserveSelection) FaceClear(m); |
|
size_t selCnt = 0; |
|
MinEdgeThr=MinEdgeThr*MinEdgeThr; |
|
MaxEdgeThr=MaxEdgeThr*MaxEdgeThr; |
|
for(FaceIterator fi=m.face.begin(); fi!=m.face.end();++fi) |
|
if(!(*fi).IsD()) |
|
{ |
|
for(int i=0;i<(*fi).VN();++i) |
|
{ |
|
const ScalarType squaredEdge=SquaredDistance((*fi).V0(i)->cP(),(*fi).V1(i)->cP()); |
|
if((squaredEdge<=MinEdgeThr) || (squaredEdge>=MaxEdgeThr) ) |
|
{ |
|
selCnt++; |
|
(*fi).SetS(); |
|
break; // skip the rest of the edges of the tri |
|
} |
|
} |
|
} |
|
return selCnt; |
|
} |
|
|
|
/// \brief This function expand current selection to cover the whole connected component. |
|
static size_t FaceConnectedFF(MeshType &m) |
|
{ |
|
// it also assumes that the FF adjacency is well computed. |
|
RequireFFAdjacency(m); |
|
UpdateFlags<MeshType>::FaceClearV(m); |
|
|
|
std::deque<FacePointer> visitStack; |
|
size_t selCnt=0; |
|
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) |
|
if( !(*fi).IsD() && (*fi).IsS() && !(*fi).IsV() ) |
|
visitStack.push_back(&*fi); |
|
|
|
while(!visitStack.empty()) |
|
{ |
|
FacePointer fp = visitStack.front(); |
|
visitStack.pop_front(); |
|
assert(!fp->IsV()); |
|
fp->SetV(); |
|
for(int i=0;i<fp->VN();++i) { |
|
FacePointer ff = fp->FFp(i); |
|
if(! ff->IsS()) |
|
{ |
|
ff->SetS(); |
|
++selCnt; |
|
visitStack.push_back(ff); |
|
assert(!ff->IsV()); |
|
} |
|
} |
|
} |
|
return selCnt; |
|
} |
|
/// \brief Select the faces whose quality is in the specified closed interval. |
|
static size_t FaceFromQualityRange(MeshType &m,float minq, float maxq, bool preserveSelection=false) |
|
{ |
|
size_t selCnt=0; |
|
if(!preserveSelection) FaceClear(m); |
|
RequirePerFaceQuality(m); |
|
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) |
|
if(!(*fi).IsD()) |
|
{ |
|
if( (*fi).Q()>=minq && (*fi).Q()<=maxq ) |
|
{ |
|
(*fi).SetS(); |
|
++selCnt; |
|
} |
|
} |
|
return selCnt; |
|
} |
|
|
|
/// \brief Select the vertices whose quality is in the specified closed interval. |
|
static size_t VertexFromQualityRange(MeshType &m,float minq, float maxq, bool preserveSelection=false) |
|
{ |
|
size_t selCnt=0; |
|
if(!preserveSelection) VertexClear(m); |
|
RequirePerVertexQuality(m); |
|
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi) |
|
if(!(*vi).IsD()) |
|
{ |
|
if( (*vi).Q()>=minq && (*vi).Q()<=maxq ) |
|
{ |
|
(*vi).SetS(); |
|
++selCnt; |
|
} |
|
} |
|
return selCnt; |
|
} |
|
|
|
/// \brief Select the vertices contained in the specified Box |
|
static size_t VertexInBox( MeshType & m, const Box3Type &bb, bool preserveSelection=false) |
|
{ |
|
if(!preserveSelection) VertexClear(m); |
|
int selCnt=0; |
|
for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD()) |
|
{ |
|
if(bb.IsIn((*vi).cP()) ) { |
|
(*vi).SetS(); |
|
++selCnt; |
|
} |
|
} |
|
return selCnt; |
|
} |
|
|
|
/// \brief Select the border vertices that form a corner along the border |
|
/// with an angle that is below a certain threshold (e.g. with 90 will select all the acute angles) |
|
/// It assumes that the Per-Vertex border Flag has been set. |
|
static size_t VertexCornerBorder(MeshType &m, ScalarType angleRad, bool preserveSelection=false) |
|
{ |
|
if(!preserveSelection) VertexClear(m); |
|
SimpleTempData<typename MeshType::VertContainer, ScalarType > angleSumH(m.vert,0); |
|
int selCnt=0; |
|
for(auto vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD()) |
|
angleSumH[vi]=0; |
|
|
|
for(auto fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) |
|
{ |
|
for(int i=0;i<(*fi).VN();++i) |
|
angleSumH[fi->V(i)] += face::WedgeAngleRad(*fi,i); |
|
} |
|
|
|
for(auto vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD()) |
|
{ |
|
if(angleSumH[vi]<angleRad && vi->IsB()) |
|
{ |
|
(*vi).SetS(); |
|
++selCnt; |
|
} |
|
} |
|
return selCnt; |
|
} |
|
|
|
|
|
void VertexNonManifoldEdges(MeshType &m, bool preserveSelection=false) |
|
{ |
|
tri::RequireFFAdjacency(m); |
|
|
|
if(!preserveSelection) VertexClear(m); |
|
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) |
|
{ |
|
for(int i=0;i<fi->VN();++i) |
|
if(!IsManifold(*fi,i)){ |
|
(*fi).V0(i)->SetS(); |
|
(*fi).V1(i)->SetS(); |
|
} |
|
} |
|
} |
|
|
|
}; // end class |
|
|
|
} // End namespace |
|
} // End namespace |
|
|
|
|
|
#endif
|
|
|