You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
241 lines
6.6 KiB
241 lines
6.6 KiB
/**************************************************************************** |
|
* VCGLib o o * |
|
* Visual and Computer Graphics Library o o * |
|
* _ O _ * |
|
* Copyright(C) 2004-2016 \/)\/ * |
|
* Visual Computing Lab /\/| * |
|
* ISTI - Italian National Research Council | * |
|
* \ * |
|
* All rights reserved. * |
|
* * |
|
* This program is free software; you can redistribute it and/or modify * |
|
* it under the terms of the GNU General Public License as published by * |
|
* the Free Software Foundation; either version 2 of the License, or * |
|
* (at your option) any later version. * |
|
* * |
|
* This program is distributed in the hope that it will be useful, * |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of * |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * |
|
* for more details. * |
|
* * |
|
****************************************************************************/ |
|
|
|
#ifndef __VCGLIB_LEGENDRE_H |
|
#define __VCGLIB_LEGENDRE_H |
|
|
|
#include <vcg/math/base.h> |
|
|
|
namespace vcg { |
|
namespace math { |
|
|
|
/* |
|
* Contrary to their definition, the Associated Legendre Polynomials presented here are |
|
* only computed for positive m values. |
|
* |
|
*/ |
|
template <typename ScalarType> |
|
class Legendre { |
|
|
|
protected : |
|
|
|
/** |
|
* Legendre Polynomial three term Recurrence Relation |
|
*/ |
|
static inline ScalarType legendre_next(unsigned l, ScalarType P_lm1, ScalarType P_lm2, ScalarType x) |
|
{ |
|
return ((2 * l + 1) * x * P_lm1 - l * P_lm2) / (l + 1); |
|
} |
|
|
|
/** |
|
* Associated Legendre Polynomial three term Recurrence Relation. |
|
* Raises the band index. |
|
*/ |
|
static inline double legendre_next(unsigned l, unsigned m, ScalarType P_lm1, ScalarType P_lm2, ScalarType x) |
|
{ |
|
return ((2 * l + 1) * x * P_lm1 - (l + m) * P_lm2) / (l + 1 - m); |
|
} |
|
|
|
/** |
|
* Recurrence relation to compute P_m_(m+1) given P_m_m at the same x |
|
*/ |
|
static inline double legendre_P_m_mplusone(unsigned m, ScalarType p_m_m, ScalarType x) |
|
{ |
|
return x * (2.0 * m + 1.0) * p_m_m; |
|
} |
|
|
|
/** |
|
* Starting relation to compute P_m_m according to the formula: |
|
* |
|
* pow(-1, m) * double_factorial(2 * m - 1) * pow(1 - x*x, abs(m)/2) |
|
* |
|
* which becomes, if x = cos(theta) : |
|
* |
|
* pow(-1, m) * double_factorial(2 * m - 1) * pow(sin(theta), abs(m)/2) |
|
*/ |
|
static inline double legendre_P_m_m(unsigned m, ScalarType sin_theta) |
|
{ |
|
ScalarType p_m_m = 1.0; |
|
|
|
if (m > 0) |
|
{ |
|
ScalarType fact = 1.0; //Double factorial here |
|
for (unsigned i = 1; i <= m; ++i) |
|
{ |
|
p_m_m *= fact * sin_theta; //raising sin_theta to the power of m/2 |
|
fact += 2.0; |
|
} |
|
|
|
if (m&1) //odd m |
|
{ |
|
// Condon-Shortley Phase term |
|
p_m_m *= -1; |
|
} |
|
} |
|
|
|
return p_m_m; |
|
} |
|
|
|
static inline double legendre_P_l(unsigned l, ScalarType x) |
|
{ |
|
ScalarType p0 = 1; |
|
ScalarType p1 = x; |
|
|
|
if (l == 0) return p0; |
|
|
|
for (unsigned n = 1; n < l; ++n) |
|
{ |
|
std::swap(p0, p1); |
|
p1 = legendre_next(n, p0, p1, x); |
|
} |
|
|
|
return p1; |
|
} |
|
|
|
/** |
|
* Computes the Associated Legendre Polynomial for any given |
|
* positive m and l, with m <= l and -1 <= x <= 1. |
|
*/ |
|
static inline double legendre_P_l_m(unsigned l, unsigned m, ScalarType cos_theta, ScalarType sin_theta) |
|
{ |
|
if(m > l) return 0; |
|
if(m == 0) return legendre_P_l(l, cos_theta); //OK |
|
else |
|
{ |
|
ScalarType p_m_m = legendre_P_m_m(m, sin_theta); //OK |
|
|
|
if (l == m) return p_m_m; |
|
|
|
ScalarType p_m_mplusone = legendre_P_m_mplusone(m, p_m_m, cos_theta); //OK |
|
|
|
if (l == m + 1) return p_m_mplusone; |
|
|
|
unsigned n = m + 1; |
|
|
|
while(n < l) |
|
{ |
|
std::swap(p_m_m, p_m_mplusone); |
|
p_m_mplusone = legendre_next(n, m, p_m_m, p_m_mplusone, cos_theta); |
|
++n; |
|
} |
|
|
|
return p_m_mplusone; |
|
} |
|
} |
|
|
|
public : |
|
|
|
static double Polynomial(unsigned l, ScalarType x) |
|
{ |
|
assert (x <= 1 && x >= -1); |
|
return legendre_P_l(l, x); |
|
} |
|
|
|
static double AssociatedPolynomial(unsigned l, unsigned m, ScalarType x) |
|
{ |
|
assert (m <= l && x <= 1 && x >= -1); |
|
return legendre_P_l_m(l, m, x, Sqrt(1.0 - x * x) ); |
|
} |
|
|
|
static double AssociatedPolynomial(unsigned l, unsigned m, ScalarType cos_theta, ScalarType sin_theta) |
|
{ |
|
assert (m <= l && cos_theta <= 1 && cos_theta >= -1 && sin_theta <= 1 && sin_theta >= -1); |
|
return legendre_P_l_m(l, m, cos_theta, Abs(sin_theta)); |
|
} |
|
}; |
|
|
|
|
|
template <typename ScalarType, int MAX_L> |
|
class DynamicLegendre : public Legendre<ScalarType> |
|
{ |
|
|
|
private: |
|
ScalarType matrix[MAX_L][MAX_L]; //dynamic table |
|
ScalarType _x; //table is conserved only across consistent x invocations |
|
ScalarType _sin_theta; |
|
|
|
void generate(ScalarType cos_theta, ScalarType sin_theta) |
|
{ |
|
//generate all 'l's with m = 0 |
|
|
|
matrix[0][0] = 1; |
|
matrix[0][1] = cos_theta; |
|
|
|
for (unsigned l = 2; l < MAX_L; ++l) |
|
{ |
|
matrix[0][l] = legendre_next(l-1, matrix[0][l-1], matrix[0][l-2], cos_theta); |
|
} |
|
|
|
for(unsigned l = 1; l < MAX_L; ++l) |
|
{ |
|
for (unsigned m = 1; m <= l; ++m) |
|
{ |
|
if (l == m) matrix[m][m] = legendre_P_m_m(m, sin_theta); |
|
else if (l == m + 1) matrix[m][l] = legendre_P_m_mplusone(m, matrix[m][m], cos_theta); |
|
else{ |
|
matrix[m][l] = legendre_next(l-1, m, matrix[m][l-1], matrix[m][l-2], cos_theta); |
|
} |
|
} |
|
} |
|
|
|
_x = cos_theta; |
|
} |
|
|
|
public : |
|
|
|
DynamicLegendre() : _x(2), _sin_theta(2) {} |
|
|
|
double AssociatedPolynomial(unsigned l, unsigned m, ScalarType x) |
|
{ |
|
assert (m <= l && x <= 1 && x >= -1); |
|
if (x != _x){ |
|
_sin_theta = Sqrt(1.0 - x * x); |
|
generate(x, _sin_theta); |
|
} |
|
return matrix[m][l]; |
|
} |
|
|
|
double AssociatedPolynomial(unsigned l, unsigned m, ScalarType cos_theta, ScalarType sin_theta) |
|
{ |
|
assert (m <= l && cos_theta <= 1 && cos_theta >= -1 && sin_theta <= 1 && sin_theta >= -1); |
|
if (cos_theta != _x){ |
|
_sin_theta = sin_theta; |
|
generate(cos_theta, _sin_theta); |
|
} |
|
return matrix[m][l]; |
|
} |
|
|
|
double Polynomial(unsigned l, ScalarType x) |
|
{ |
|
assert (x <= 1 && x >= -1); |
|
if (x != _x){ |
|
_sin_theta = Sqrt(1.0 - x * x); |
|
generate(x, _sin_theta); |
|
} |
|
return matrix[0][l]; |
|
} |
|
}; |
|
|
|
}} //vcg::math namespace |
|
|
|
#endif
|
|
|