You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
751 lines
36 KiB
751 lines
36 KiB
/**************************************************************************** |
|
* VCGLib o o * |
|
* Visual and Computer Graphics Library o o * |
|
* _ O _ * |
|
* Copyright(C) 2004-2016 \/)\/ * |
|
* Visual Computing Lab /\/| * |
|
* ISTI - Italian National Research Council | * |
|
* \ * |
|
* All rights reserved. * |
|
* * |
|
* This program is free software; you can redistribute it and/or modify * |
|
* it under the terms of the GNU General Public License as published by * |
|
* the Free Software Foundation; either version 2 of the License, or * |
|
* (at your option) any later version. * |
|
* * |
|
* This program is distributed in the hope that it will be useful, * |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of * |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * |
|
* for more details. * |
|
* * |
|
****************************************************************************/ |
|
|
|
#ifndef __VCG_FACE_PLUS_COMPONENT |
|
#define __VCG_FACE_PLUS_COMPONENT |
|
|
|
#include <cassert> |
|
#include <vector> |
|
#include <string> |
|
|
|
#include <vcg/space/color4.h> |
|
#include <vcg/space/texcoord2.h> |
|
|
|
namespace vcg { |
|
namespace face { |
|
/** \addtogroup FaceComponentGroup |
|
@{ |
|
*/ |
|
/*------------------------- EMPTY CORE COMPONENTS -----------------------------------------*/ |
|
|
|
template <class T> class EmptyCore: public T { |
|
public: |
|
inline typename T::VertexType * &V( const int ) { assert(0); static typename T::VertexType *vp=0; return vp; } |
|
inline const typename T::VertexType * V( const int ) const { assert(0); static typename T::VertexType *vp=0; return vp; } |
|
inline const typename T::VertexType * cV( const int ) const { assert(0); static typename T::VertexType *vp=0; return vp; } |
|
inline typename T::VertexType * &FVp( const int i ) { return this->V(i); } |
|
inline const typename T::VertexType * FVp( const int i ) const { return this->cV(i); } |
|
inline const typename T::VertexType * cFVp( const int i ) const { return this->cV(i); } |
|
inline typename T::CoordType &P( const int ) { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; } |
|
inline typename T::CoordType P( const int ) const { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; } |
|
inline const typename T::CoordType &cP( const int ) const { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; } |
|
|
|
static bool HasVertexRef() { return false; } |
|
static bool HasFVAdjacency() { return false; } |
|
|
|
typedef typename T::VertexType::NormalType NormalType; |
|
typedef NormalType WedgeNormalType; |
|
NormalType &N() { static NormalType dummy_normal(0, 0, 0); assert(0); return dummy_normal; } |
|
const NormalType& N() const { static NormalType dummy_normal(0, 0, 0); return dummy_normal; } |
|
const NormalType& cN() const { static NormalType dummy_normal(0, 0, 0); return dummy_normal; } |
|
WedgeNormalType &WN(int) { static NormalType dummy_normal(0, 0, 0); assert(0); return dummy_normal; } |
|
const WedgeNormalType& WN(int) const { static NormalType dummy_normal(0, 0, 0); return dummy_normal; } |
|
const WedgeNormalType& cWN(int) const { static NormalType dummy_normal(0, 0, 0); return dummy_normal; } |
|
|
|
|
|
typedef int WedgeTexCoordType; |
|
typedef vcg::TexCoord2<float,1> TexCoordType; |
|
TexCoordType &WT(const int) { static TexCoordType dummy_texture; assert(0); return dummy_texture;} |
|
const TexCoordType & WT(const int) const { static TexCoordType dummy_texture; return dummy_texture;} |
|
const TexCoordType &cWT(const int) const { static TexCoordType dummy_texture; return dummy_texture;} |
|
|
|
typedef int FlagType; |
|
int &Flags() { static int dummyflags(0); assert(0); return dummyflags; } |
|
int Flags() const { return 0; } |
|
int cFlags() const { return 0; } |
|
static bool HasFlags() { return false; } |
|
|
|
inline void InitIMark() { } |
|
inline int &IMark() { assert(0); static int tmp=-1; return tmp;} |
|
inline int IMark() const { return 0;} |
|
inline int cIMark() const { return 0;} |
|
|
|
typedef int MarkType; |
|
typedef float QualityType; |
|
typedef Point3f Quality3Type; |
|
typedef vcg::Color4b ColorType; |
|
typedef ColorType WedgeColorType; |
|
ColorType &C() { static ColorType dumcolor(vcg::Color4b::White); assert(0); return dumcolor; } |
|
const ColorType& C() const { static ColorType dumcolor(vcg::Color4b::White); assert(0); return dumcolor; } |
|
const ColorType& cC() const { static ColorType dumcolor(vcg::Color4b::White); assert(0); return dumcolor; } |
|
WedgeColorType &WC(const int) { static ColorType dumcolor(vcg::Color4b::White); assert(0); return dumcolor; } |
|
const WedgeColorType& WC(const int) const { static ColorType dumcolor(vcg::Color4b::White); assert(0); return dumcolor; } |
|
const WedgeColorType& cWC(const int) const { static ColorType dumcolor(vcg::Color4b::White); assert(0); return dumcolor; } |
|
QualityType &Q() { static QualityType dummyQuality(0); assert(0); return dummyQuality; } |
|
const QualityType& Q() const { static QualityType dummyQuality(0); assert(0); return dummyQuality; } |
|
const QualityType& cQ() const { static QualityType dummyQuality(0); assert(0); return dummyQuality; } |
|
Quality3Type &Q3() { static Quality3Type dummyQuality3(0,0,0); assert(0); return dummyQuality3; } |
|
const Quality3Type& Q3() const { static Quality3Type dummyQuality3(0,0,0); assert(0); return dummyQuality3; } |
|
const Quality3Type& cQ3() const { static Quality3Type dummyQuality3(0,0,0); assert(0); return dummyQuality3; } |
|
|
|
static bool HasColor() { return false; } |
|
static bool HasQuality() { return false; } |
|
static bool HasQuality3() { return false; } |
|
static bool HasMark() { return false; } |
|
static bool HasNormal() { return false; } |
|
|
|
static bool HasWedgeColor() { return false; } |
|
static bool HasWedgeNormal() { return false; } |
|
static bool HasWedgeTexCoord() { return false; } |
|
|
|
// Interfaces for dynamic types |
|
inline bool IsColorEnabled( ) const { return T::FaceType::HasColor(); } |
|
inline bool IsCurvatureDirEnabled( ) const { return T::FaceType::HasCurvatureDir(); } |
|
inline bool IsMarkEnabled( ) const { return T::FaceType::HasMark(); } |
|
inline bool IsNormalEnabled( ) const { return T::FaceType::HasNormal(); } |
|
inline bool IsQualityEnabled( ) const { return T::FaceType::HasQuality(); } |
|
inline bool IsQuality3Enabled( ) const { return T::FaceType::HasQuality3(); } |
|
|
|
inline bool IsWedgeColorEnabled( ) const { return T::FaceType::HasWedgeColor(); } |
|
inline bool IsWedgeNormalEnabled( ) const { return T::FaceType::HasWedgeNormal(); } |
|
inline bool IsWedgeTexCoordEnabled( ) const { return T::FaceType::HasWedgeTexCoord(); } |
|
|
|
typedef int VFAdjType; |
|
typename T::FacePointer &VFp(int) { static typename T::FacePointer fp=0; assert(0); return fp; } |
|
typename T::FacePointer VFp(int) const { static typename T::FacePointer fp=0; assert(0); return fp; } |
|
const typename T::FacePointer &cVFp(int) const { static typename T::FacePointer fp=0; assert(0); return fp; } |
|
typename T::FacePointer &FFp(int) { static typename T::FacePointer fp=0; assert(0); return fp; } |
|
typename T::FacePointer FFp(int) const { static typename T::FacePointer fp=0; assert(0); return fp; } |
|
const typename T::FacePointer &cFFp(int) const { static typename T::FacePointer fp=0; assert(0); return fp; } |
|
typename T::EdgePointer &FEp(int) { static typename T::EdgePointer fp=0; assert(0); return fp; } |
|
typename T::EdgePointer FEp(int) const { static typename T::EdgePointer fp=0; assert(0); return fp; } |
|
const typename T::EdgePointer &cFEp(int) const { static typename T::EdgePointer fp=0; assert(0); return fp; } |
|
typename T::HEdgePointer &FHp() { static typename T::HEdgePointer fp=0; assert(0); return fp; } |
|
typename T::HEdgePointer FHp() const { static typename T::HEdgePointer fp=0; assert(0); return fp; } |
|
const typename T::HEdgePointer &cFHp() const { static typename T::HEdgePointer fp=0; assert(0); return fp; } |
|
char &VFi(int) { static char z=0; assert(0); return z;} |
|
char VFi(int) const { static char z=0; assert(0); return z;} |
|
char cVFi(int) const { static char z=0; assert(0); return z;} |
|
char &FFi(int) { static char z=0; assert(0); return z;} |
|
char FFi(int) const { static char z=0; assert(0); return z;} |
|
char cFFi(int) const { static char z=0; assert(0); return z;} |
|
bool IsVFInitialized(const int j) const {return static_cast<const typename T::FaceType *>(this)->cVFi(j)!=-1;} |
|
void VFClear(int j) { |
|
if(IsVFInitialized(j)) { |
|
static_cast<typename T::FacePointer>(this)->VFp(j)=0; |
|
static_cast<typename T::FacePointer>(this)->VFi(j)=-1; |
|
} |
|
} |
|
static bool HasVFAdjacency() { return false; } |
|
static bool HasFFAdjacency() { return false; } |
|
static bool HasFEAdjacency() { return false; } |
|
static bool HasFHAdjacency() { return false; } |
|
|
|
typedef typename T::VertexType::CurvatureDirType CurvatureDirType; |
|
typedef typename T::CoordType CurVecType; |
|
typedef typename T::ScalarType CurScalarType; |
|
CurVecType &PD1() { static typename T::CoordType dummy(0, 0, 0); assert(0); return dummy; } |
|
CurVecType &PD2() { static typename T::CoordType dummy(0, 0, 0); assert(0); return dummy; } |
|
const CurVecType& PD1() const { static typename T::CoordType dummy(0, 0, 0); assert(0); return dummy; } |
|
const CurVecType& PD2() const { static typename T::CoordType dummy(0, 0, 0); assert(0); return dummy; } |
|
const CurVecType& cPD1() const { static typename T::CoordType dummy(0, 0, 0); assert(0); return dummy; } |
|
const CurVecType& cPD2() const { static typename T::CoordType dummy(0, 0, 0); assert(0); return dummy; } |
|
|
|
CurScalarType &K1() { static typename T::ScalarType dummy(0); assert(0); return dummy; } |
|
CurScalarType &K2() { static typename T::ScalarType dummy(0); assert(0); return dummy; } |
|
const CurScalarType& K1() const { static typename T::ScalarType dummy(0); assert(0); return dummy; } |
|
const CurScalarType& K2() const { static typename T::ScalarType dummy(0); assert(0); return dummy; } |
|
const CurScalarType& cK1() const { static typename T::ScalarType dummy(0); assert(0); return dummy; } |
|
const CurScalarType& cK2() const { static typename T::ScalarType dummy(0); assert(0); return dummy; } |
|
|
|
static bool HasCurvatureDir() { return false; } |
|
|
|
|
|
static bool HasPolyInfo() { return false; } |
|
|
|
template <class RightValueType> |
|
void ImportData(const RightValueType & rightF) {T::ImportData(rightF);} |
|
inline void Alloc(const int & ns) {T::Alloc(ns);} |
|
inline void Dealloc(){T::Dealloc();} |
|
static void Name(std::vector<std::string> & name){T::Name(name);} |
|
}; |
|
|
|
/*-------------------------- VertexRef ----------------------------------------*/ |
|
/*! \brief The references to the vertexes of a triangular face |
|
* |
|
* Stored as three pointers to the VertexType |
|
*/ |
|
|
|
|
|
template <class T> class VertexRef: public T { |
|
public: |
|
VertexRef(){ |
|
v[0]=0; |
|
v[1]=0; |
|
v[2]=0; |
|
} |
|
|
|
typedef typename T::VertexType::CoordType CoordType; |
|
typedef typename T::VertexType::ScalarType ScalarType; |
|
|
|
inline typename T::VertexType * &V( const int j ) { assert(j>=0 && j<3); return v[j]; } /// \brief The pointer to the i-th vertex |
|
inline const typename T::VertexType * V (const int j) const { assert(j>=0 && j<3); return v[j]; } |
|
inline const typename T::VertexType * cV( const int j ) const { assert(j>=0 && j<3); return v[j]; } |
|
|
|
inline CoordType &P( const int j ) { assert(j>=0 && j<3); return v[j]->P(); } /// \brief Shortcut: the position of the i-th vertex (equivalent to \c V(i)->P() ) |
|
inline const CoordType &P( const int j ) const { assert(j>=0 && j<3); return v[j]->P(); } |
|
inline const CoordType &cP( const int j ) const { assert(j>=0 && j<3); return v[j]->cP(); } |
|
|
|
inline typename T::VertexType * & V0( const int j ) { return V(j);} /** \brief Return the pointer to the j-th vertex of the face. */ |
|
inline typename T::VertexType * & V1( const int j ) { return V((j+1)%3);} /** \brief Return the pointer to the ((j+1)%3)-th vertex of the face. */ |
|
inline typename T::VertexType * & V2( const int j ) { return V((j+2)%3);} /** \brief Return the pointer to the ((j+2)%3)-th vertex of the face. */ |
|
inline const typename T::VertexType * V0( const int j ) const { return V(j);} /** \brief Return the pointer to the j-th vertex of the face. */ |
|
inline const typename T::VertexType * V1( const int j ) const { return V((j+1)%3);} /** \brief Return the pointer to the ((j+1)%3)-th vertex of the face. */ |
|
inline const typename T::VertexType * V2( const int j ) const { return V((j+2)%3);} /** \brief Return the pointer to the ((j+2)%3)-th vertex of the face. */ |
|
inline const typename T::VertexType * cV0( const int j ) const { return cV(j);} |
|
inline const typename T::VertexType * cV1( const int j ) const { return cV((j+1)%3);} |
|
inline const typename T::VertexType * cV2( const int j ) const { return cV((j+2)%3);} |
|
|
|
inline CoordType & P0( const int j ) { return V(j)->P();} |
|
inline CoordType & P1( const int j ) { return V((j+1)%3)->P();} |
|
inline CoordType & P2( const int j ) { return V((j+2)%3)->P();} |
|
inline const CoordType & P0( const int j ) const { return V(j)->P();} |
|
inline const CoordType & P1( const int j ) const { return V((j+1)%3)->P();} |
|
inline const CoordType & P2( const int j ) const { return V((j+2)%3)->P();} |
|
inline const CoordType & cP0( const int j ) const { return cV(j)->P();} |
|
inline const CoordType & cP1( const int j ) const { return cV((j+1)%3)->P();} |
|
inline const CoordType & cP2( const int j ) const { return cV((j+2)%3)->P();} |
|
|
|
// Small comment about the fact that the pointers are zero filled. |
|
// The importLocal is meant for copyng stuff between very different meshes, so copying the pointers would be meaningless. |
|
// if you are using ImportData for copying internally simplex you have to set up all the pointers by hand. |
|
template <class RightValueType> |
|
void ImportData(const RightValueType & rightF){ T::ImportData(rightF);} |
|
inline void Alloc(const int & ns){T::Alloc(ns);} |
|
inline void Dealloc(){T::Dealloc();} |
|
|
|
static bool HasVertexRef() { return true; } |
|
static bool HasFVAdjacency() { return true; } |
|
|
|
static void Name(std::vector<std::string> & name){name.push_back(std::string("VertexRef"));T::Name(name);} |
|
|
|
private: |
|
typename T::VertexType *v[3]; |
|
}; |
|
|
|
template <class A, class T> class NormalAbs: public T { |
|
public: |
|
typedef A NormalType; |
|
inline NormalType &N() { return _norm; } |
|
inline const NormalType &N() const { return _norm; } |
|
inline const NormalType &cN() const { return _norm; } |
|
template <class RightValueType> |
|
void ImportData(const RightValueType & rightF) |
|
{ |
|
if(rightF.IsNormalEnabled()) N().Import(rightF.cN()); |
|
T::ImportData(rightF); |
|
} |
|
|
|
inline void Alloc(const int & ns){T::Alloc(ns);} |
|
inline void Dealloc(){T::Dealloc();} |
|
static bool HasNormal() { return true; } |
|
static void Name(std::vector<std::string> & name){name.push_back(std::string("NormalAbs"));T::Name(name);} |
|
|
|
private: |
|
NormalType _norm; |
|
}; |
|
|
|
template <class T> class WedgeNormal: public T { |
|
public: |
|
typedef typename T::VertexType::NormalType WedgeNormalType; |
|
inline WedgeNormalType &WN(int j) { return _wnorm[j]; } |
|
inline const WedgeNormalType &WN(int j) const { return _wnorm[j]; } |
|
inline const WedgeNormalType &cWN(int j) const { return _wnorm[j]; } |
|
template <class RightValueType> |
|
void ImportData(const RightValueType & rightF){ if(rightF.IsWedgeNormalEnabled()) for (int i=0; i<3; ++i) { WN(i) = rightF.cWN(i); } T::ImportData(rightF);} |
|
inline void Alloc(const int & ns){T::Alloc(ns);} |
|
inline void Dealloc(){T::Dealloc();} |
|
static bool HasWedgeNormal() { return true; } |
|
static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeNormal"));T::Name(name);} |
|
|
|
private: |
|
WedgeNormalType _wnorm[3]; |
|
}; |
|
|
|
template <class A, class T> class WedgeRealNormal: public T { |
|
public: |
|
typedef A WedgeNormalType; |
|
inline WedgeNormalType &WN(int i) { return _wn[i]; } |
|
inline const WedgeNormalType &WN(int i) const { return _wn[i]; } |
|
inline const WedgeNormalType &cWN(int i) const { return _wn[i]; } |
|
template <class RightValueType> |
|
void ImportData(const RightValueType & rightF){ if(RightValueType::HasWedgeNormal()) for (int i=0; i<3; ++i) { WN(i) = rightF.cWN(i); } T::ImportData(rightF);} |
|
inline void Alloc(const int & ns){T::Alloc(ns);} |
|
inline void Dealloc(){T::Dealloc();} |
|
static bool HasWedgeNormal() { return true; } |
|
static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeRealNormal"));T::Name(name);} |
|
|
|
private: |
|
WedgeNormalType _wn[3]; |
|
}; |
|
|
|
template <class TT> class WedgeRealNormal3s: public WedgeRealNormal<vcg::Point3s, TT> { |
|
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeRealNormal2s"));TT::Name(name);}}; |
|
template <class TT> class WedgeRealNormal3f: public WedgeRealNormal<vcg::Point3f, TT> { |
|
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeRealNormal2f"));TT::Name(name);}}; |
|
template <class TT> class WedgeRealNormal3d: public WedgeRealNormal<vcg::Point3d, TT> { |
|
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeRealNormal2d"));TT::Name(name);}}; |
|
|
|
template <class T> class Normal3s: public NormalAbs<vcg::Point3s, T> { |
|
public:static void Name(std::vector<std::string> & name){name.push_back(std::string("Normal3s"));T::Name(name);} |
|
}; |
|
template <class T> class Normal3f: public NormalAbs<vcg::Point3f, T> { |
|
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Normal3f"));T::Name(name);} |
|
}; |
|
template <class T> class Normal3d: public NormalAbs<vcg::Point3d, T> { |
|
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Normal3d"));T::Name(name);} |
|
}; |
|
|
|
|
|
/*-------------------------- TexCoord ----------------------------------------*/ |
|
|
|
template <class A, class T> class WedgeTexCoord: public T { |
|
public: |
|
typedef int WedgeTexCoordType; |
|
typedef A TexCoordType; |
|
TexCoordType &WT(const int i) { return _wt[i]; } |
|
const TexCoordType &WT(const int i) const { return _wt[i]; } |
|
const TexCoordType &cWT(const int i) const { return _wt[i]; } |
|
template <class RightValueType> |
|
void ImportData(const RightValueType & rightF){ |
|
if(rightF.IsWedgeTexCoordEnabled()) |
|
for (int i=0; i<3; ++i) { WT(i) = rightF.cWT(i); } |
|
T::ImportData(rightF); |
|
} |
|
inline void Alloc(const int & ns){T::Alloc(ns);} |
|
inline void Dealloc(){T::Dealloc();} |
|
static bool HasWedgeTexCoord() { return true; } |
|
static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeTexCoord"));T::Name(name);} |
|
|
|
private: |
|
TexCoordType _wt[3]; |
|
}; |
|
|
|
template <class TT> class WedgeTexCoord2s: public WedgeTexCoord<TexCoord2<short,1>, TT> { |
|
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeTexCoord2s"));TT::Name(name);} |
|
}; |
|
template <class TT> class WedgeTexCoord2f: public WedgeTexCoord<TexCoord2<float,1>, TT> { |
|
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeTexCoord2f"));TT::Name(name);} |
|
}; |
|
template <class TT> class WedgeTexCoord2d: public WedgeTexCoord<TexCoord2<double,1>, TT> { |
|
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeTexCoord2d"));TT::Name(name);} |
|
}; |
|
|
|
/*------------------------- BitFlags -----------------------------------------*/ |
|
/*! \brief \em Component: Per face \b Flags |
|
|
|
This component stores a 32 bit array of bit flags. These bit flags are used for keeping track of selection, deletion, visiting etc. \sa \ref flags for more details on common uses of flags. |
|
*/ |
|
template <class T> class BitFlags: public T { |
|
public: |
|
BitFlags():_flags(0) {} |
|
typedef int FlagType; |
|
int &Flags() {return _flags; } |
|
int Flags() const {return _flags; } |
|
int cFlags() const {return _flags; } |
|
template <class RightValueType> |
|
void ImportData(const RightValueType & rightF){ |
|
if(RightValueType::HasFlags()) |
|
Flags() = rightF.cFlags(); |
|
T::ImportData(rightF); |
|
} |
|
inline void Alloc(const int & ns){T::Alloc(ns);} |
|
inline void Dealloc(){T::Dealloc();} |
|
static bool HasFlags() { return true; } |
|
static void Name(std::vector<std::string> & name){name.push_back(std::string("BitFlags"));T::Name(name);} |
|
|
|
private: |
|
int _flags; |
|
}; |
|
|
|
/*-------------------------- Color ----------------------------------*/ |
|
template <class A, class T> class Color: public T { |
|
public: |
|
typedef A ColorType; |
|
Color():_color(vcg::Color4b::White) {} |
|
ColorType &C() { return _color; } |
|
const ColorType &C() const { return _color; } |
|
const ColorType &cC() const { return _color; } |
|
template <class RightValueType> |
|
void ImportData(const RightValueType & rightF){ |
|
if(rightF.IsColorEnabled()) C() = rightF.cC(); |
|
T::ImportData(rightF); |
|
} |
|
inline void Alloc(const int & ns){T::Alloc(ns);} |
|
inline void Dealloc(){T::Dealloc();} |
|
static bool HasColor() { return true; } |
|
static void Name(std::vector<std::string> & name){name.push_back(std::string("Color"));T::Name(name);} |
|
|
|
private: |
|
ColorType _color; |
|
}; |
|
|
|
template <class A, class T> class WedgeColor: public T { |
|
public: |
|
typedef A WedgeColorType; |
|
WedgeColorType &WC(int i) { return _color[i]; } |
|
const WedgeColorType &WC(int i) const { return _color[i]; } |
|
const WedgeColorType &cWC(int i) const { return _color[i]; } |
|
|
|
template <class RightValueType> |
|
void ImportData(const RightValueType & rightF){ |
|
if (rightF.IsWedgeColorEnabled()) |
|
{ |
|
for (int i=0; i<3; ++i) { WC(i) = rightF.cWC(i); } |
|
} |
|
T::ImportData(rightF); |
|
|
|
} |
|
static bool HasWedgeColor() { return true; } |
|
static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeColor"));T::Name(name);} |
|
|
|
private: |
|
WedgeColorType _color[3]; |
|
}; |
|
|
|
template <class T> class WedgeColor4b: public WedgeColor<vcg::Color4b, T> { |
|
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeColor4b"));T::Name(name);} |
|
}; |
|
template <class T> class WedgeColor4f: public WedgeColor<vcg::Color4f, T> { |
|
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("WedgeColor4f"));T::Name(name);} |
|
}; |
|
template <class T> class Color4b: public Color<vcg::Color4b, T> { |
|
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Color4b"));T::Name(name);} |
|
}; |
|
|
|
/*-------------------------- Quality ----------------------------------*/ |
|
template <class A, class T> class Quality: public T { |
|
public: |
|
typedef A QualityType; |
|
Quality():_quality(0) {} |
|
QualityType &Q() { return _quality; } |
|
const QualityType &Q() const { return _quality; } |
|
const QualityType &cQ() const { return _quality; } |
|
template <class RightValueType> |
|
void ImportData(const RightValueType & rightF){ |
|
if(rightF.IsQualityEnabled()) |
|
Q() = rightF.cQ(); |
|
T::ImportData(rightF); |
|
} |
|
inline void Alloc(const int & ns){T::Alloc(ns);} |
|
inline void Dealloc(){T::Dealloc();} |
|
static bool HasQuality() { return true; } |
|
static void Name(std::vector<std::string> & name){name.push_back(std::string("Quality"));T::Name(name);} |
|
private: |
|
QualityType _quality; |
|
}; |
|
|
|
template <class T> class Qualitys: public Quality<short, T> { |
|
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Qualitys"));T::Name(name);} |
|
}; |
|
template <class T> class Qualityf: public Quality<float, T> { |
|
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Qualityf"));T::Name(name);} |
|
}; |
|
template <class T> class Qualityd: public Quality<double, T> { |
|
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Qualityd"));T::Name(name);} |
|
}; |
|
|
|
/*-------------------------- Quality3 ----------------------------------*/ |
|
template <class A, class T> class Quality3: public T { |
|
public: |
|
typedef vcg::Point3<A> Quality3Type; |
|
Quality3Type &Q3() { return _quality; } |
|
const Quality3Type &Q3() const { return _quality; } |
|
const Quality3Type &cQ3() const { return _quality; } |
|
template <class RightValueType> |
|
void ImportData(const RightValueType & rightF){ |
|
if(rightF.IsQuality3Enabled()) Q3() = rightF.cQ3(); |
|
T::ImportData(rightF); |
|
} |
|
inline void Alloc(const int & ns){T::Alloc(ns);} |
|
inline void Dealloc(){T::Dealloc();} |
|
static bool HasQuality3() { return true; } |
|
static void Name(std::vector<std::string> & name){name.push_back(std::string("Quality3"));T::Name(name);} |
|
private: |
|
Quality3Type _quality; |
|
}; |
|
|
|
template <class T> class Quality3s: public Quality3<short, T> { |
|
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Quality3s"));T::Name(name);} |
|
}; |
|
template <class T> class Quality3f: public Quality3<float, T> { |
|
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Quality3f"));T::Name(name);} |
|
}; |
|
template <class T> class Quality3d: public Quality3<double, T> { |
|
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Quality3d"));T::Name(name);} |
|
}; |
|
|
|
/*-------------------------- INCREMENTAL MARK ----------------------------------------*/ |
|
/*! \brief Per vertex \b Incremental \b Mark |
|
|
|
It is just an \c int that allows to efficently (in constant time) un-mark the whole mesh. \sa UnmarkAll |
|
*/ |
|
|
|
template <class T> class Mark: public T { |
|
public: |
|
Mark():_imark(0){} |
|
inline int &IMark() { return _imark;} |
|
inline int IMark() const { return _imark;} |
|
inline int cIMark() const { return _imark;} |
|
inline void InitIMark() { _imark = 0; } |
|
static bool HasMark() { return true; } |
|
template <class RightValueType> |
|
void ImportData(const RightValueType & rightF){ |
|
if(rightF.IsMarkEnabled()) |
|
IMark() = rightF.cIMark(); |
|
T::ImportData(rightF); |
|
} |
|
static void Name(std::vector<std::string> & name){name.push_back(std::string("Mark"));T::Name(name);} |
|
|
|
private: |
|
int _imark; |
|
}; |
|
|
|
/*-------------------------- Curvature Direction ----------------------------------*/ |
|
template <class S> |
|
struct CurvatureDirBaseType{ |
|
typedef Point3<S> CurVecType; |
|
typedef S CurScalarType; |
|
CurvatureDirBaseType () {} |
|
Point3<S>max_dir,min_dir; // max and min curvature direction |
|
S k1,k2;// max and min curvature values |
|
}; |
|
|
|
template <class A, class TT> class CurvatureDir: public TT { |
|
public: |
|
typedef A CurvatureDirType; |
|
typedef typename CurvatureDirType::CurVecType CurVecType; |
|
typedef typename CurvatureDirType::CurScalarType CurScalarType; |
|
|
|
CurVecType &PD1() { return _curv.max_dir; } |
|
CurVecType &PD2() { return _curv.min_dir; } |
|
const CurVecType &PD1() const { return _curv.max_dir; } |
|
const CurVecType &PD2() const { return _curv.min_dir; } |
|
const CurVecType &cPD1() const { return _curv.max_dir; } |
|
const CurVecType &cPD2() const { return _curv.min_dir; } |
|
|
|
CurScalarType &K1() { return _curv.k1; } |
|
CurScalarType &K2() { return _curv.k2; } |
|
const CurScalarType &K1() const { return _curv.k1; } |
|
const CurScalarType &K2() const { return _curv.k2; } |
|
const CurScalarType &cK1() const { return _curv.k1; } |
|
const CurScalarType &cK2() const { return _curv.k2; } |
|
template < class RightValueType> |
|
void ImportData(const RightValueType & rightF ) { |
|
if(rightF.IsCurvatureDirEnabled()) { |
|
PD1() = rightF.cPD1(); PD2() = rightF.cPD2(); |
|
K1() = rightF.cK1(); K2() = rightF.cK2(); |
|
} |
|
TT::ImportData(rightF); |
|
} |
|
|
|
static bool HasCurvatureDir() { return true; } |
|
static void Name(std::vector<std::string> & name){name.push_back(std::string("CurvatureDir"));TT::Name(name);} |
|
|
|
private: |
|
CurvatureDirType _curv; |
|
}; |
|
|
|
|
|
template <class T> class CurvatureDirf: public CurvatureDir<CurvatureDirBaseType<float>, T> { |
|
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("CurvatureDirf"));T::Name(name);} |
|
}; |
|
template <class T> class CurvatureDird: public CurvatureDir<CurvatureDirBaseType<double>, T> { |
|
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("CurvatureDird"));T::Name(name);} |
|
}; |
|
|
|
/*----------------------------- VFADJ ------------------------------*/ |
|
/*! \brief \em Component: Per Face \b Vertex-Face adjacency relation |
|
|
|
It stores a pointer to the next face of the list of faces incident on a vertex that is stored in a distributed way on the faces themselves. |
|
Note that if you use this component it is expected that on the Vertex you use also the corresponding vcg::vertex::VFAdj component. |
|
Note that for this component we have three class of values: |
|
- \b valid: a valid pointer in the range of the vector of faces |
|
- \b null: a null pointer, used to indicate the end of the list |
|
- \b uninitialized: a special value that you can test/set with the IsVFInitialized()/VFClear() functions; |
|
it is used to indicate when the VF Topology is not computed. |
|
|
|
\sa vcg::tri::UpdateTopology for functions that compute this relation |
|
\sa vcg::vertex::VFAdj |
|
\sa iterators |
|
*/ |
|
|
|
|
|
template <class T> class VFAdj: public T { |
|
public: |
|
VFAdj(){ |
|
_vfp[0]=0; |
|
_vfp[1]=0; |
|
_vfp[2]=0; |
|
_vfi[0]=-1; |
|
_vfi[1]=-1; |
|
_vfi[2]=-1; |
|
} |
|
typename T::FacePointer &VFp(const int j) { assert(j>=0 && j<3); return _vfp[j]; } |
|
typename T::FacePointer VFp(const int j) const { assert(j>=0 && j<3); return _vfp[j]; } |
|
const typename T::FacePointer &cVFp(const int j) const { assert(j>=0 && j<3); return _vfp[j]; } |
|
char &VFi(const int j) {return _vfi[j]; } |
|
char VFi(const int j)const {return _vfi[j]; } |
|
char cVFi(const int j)const {return _vfi[j]; } |
|
template <class RightValueType> |
|
void ImportData(const RightValueType & rightF){T::ImportData(rightF);} |
|
inline void Alloc(const int & ns){T::Alloc(ns);} |
|
inline void Dealloc(){T::Dealloc();} |
|
static bool HasVFAdjacency() { return true; } |
|
static void Name(std::vector<std::string> & name){name.push_back(std::string("VFAdj"));T::Name(name);} |
|
|
|
private: |
|
typename T::FacePointer _vfp[3] ; |
|
char _vfi[3] ; |
|
}; |
|
|
|
/*----------------------------- EFADJ ------------------------------*/ |
|
template <class T> class EFAdj: public T { |
|
public: |
|
EFAdj(){ |
|
_efp[0]=0; |
|
_efp[1]=0; |
|
_efp[2]=0; |
|
_efi[0]=-1; |
|
_efi[1]=-1; |
|
_efi[2]=-1; |
|
} |
|
typename T::FacePointer &EFp(const int j) { assert(j>=0 && j<3); return _efp[j]; } |
|
const typename T::FacePointer &cEFp(const int j) const { assert(j>=0 && j<3); return _efp[j]; } |
|
char &VFi(const int j) {return _efi[j]; } |
|
char VFi(const int j) const {return _efi[j]; } |
|
template <class RightValueType> |
|
void ImportData(const RightValueType & rightF){T::ImportData(rightF);} |
|
inline void Alloc(const int & ns){T::Alloc(ns);} |
|
inline void Dealloc(){T::Dealloc();} |
|
static bool HasEFAdjacency() { return true; } |
|
static void Name(std::vector<std::string> & name){name.push_back(std::string("EFAdj"));T::Name(name);} |
|
|
|
private: |
|
typename T::FacePointer _efp[3] ; |
|
char _efi[3] ; |
|
}; |
|
|
|
|
|
/*----------------------------- FFADJ ------------------------------*/ |
|
/*! \brief \em Component: Per Face \b Face-Face adjacency relation |
|
|
|
It encodes the adjacency of faces through edges; for 2-manifold edges it just point to the other face, |
|
and for non manifold edges (where more than 2 faces share the same edge) it stores a pointer to the next |
|
face of the ring of faces incident on a edge. |
|
Note that border faces points to themselves. |
|
NULL pointer is used as a special value to indicate when the FF Topology is not computed. |
|
|
|
\sa vcg::tri::UpdateTopology for functions that compute this relation |
|
\sa vcg::vertex::VFAdj |
|
\sa iterators |
|
*/ |
|
|
|
template <class T> class FFAdj: public T { |
|
public: |
|
FFAdj(){ |
|
_ffp[0]=nullptr; // null == not initialized |
|
_ffp[1]=nullptr; |
|
_ffp[2]=nullptr; |
|
} |
|
typename T::FacePointer &FFp(const int j) { assert(j>=0 && j<3); return _ffp[j]; } |
|
typename T::FacePointer FFp(const int j) const { assert(j>=0 && j<3); return _ffp[j]; } |
|
const typename T::FacePointer &cFFp(const int j) const { assert(j>=0 && j<3); return _ffp[j]; } |
|
char &FFi(const int j) { return _ffi[j]; } |
|
char FFi(const int j) const { return _ffi[j]; } |
|
char cFFi(const int j) const { return _ffi[j]; } |
|
|
|
typename T::FacePointer &FFp1( const int j ) { return FFp((j+1)%3);} |
|
typename T::FacePointer &FFp2( const int j ) { return FFp((j+2)%3);} |
|
typename T::FacePointer FFp1( const int j ) const { return FFp((j+1)%3);} |
|
typename T::FacePointer FFp2( const int j ) const { return FFp((j+2)%3);} |
|
const typename T::FacePointer &cFFp1( const int j ) const { return FFp((j+1)%3);} |
|
const typename T::FacePointer &cFFp2( const int j ) const { return FFp((j+2)%3);} |
|
|
|
template <class RightValueType> |
|
void ImportData(const RightValueType & rightF){T::ImportData(rightF);} |
|
inline void Alloc(const int & ns){T::Alloc(ns);} |
|
inline void Dealloc(){T::Dealloc();} |
|
static bool HasFFAdjacency() { return true; } |
|
static void Name(std::vector<std::string> & name){name.push_back(std::string("FFAdj"));T::Name(name);} |
|
|
|
private: |
|
typename T::FacePointer _ffp[3] ; |
|
char _ffi[3] ; |
|
}; |
|
|
|
|
|
/*----------------------------- FEADJ ------------------------------*/ |
|
|
|
template <class T> class FEAdj: public T { |
|
public: |
|
FEAdj(){ |
|
_fep[0]=0; |
|
_fep[1]=0; |
|
_fep[2]=0; |
|
} |
|
|
|
typename T::EdgePointer &FEp( int j) { assert(j>=0 && j<3); return _fep[j]; } |
|
typename T::EdgePointer FEp( int j) const { assert(j>=0 && j<3); return _fep[j]; } |
|
const typename T::EdgePointer &cFEp( int j) const { assert(j>=0 && j<3); return _fep[j]; } |
|
|
|
typename T::EdgePointer &FEp1( int j ) { return FEp((j+1)%3);} |
|
typename T::EdgePointer &FEp2( int j ) { return FEp((j+2)%3);} |
|
typename T::EdgePointer FEp1( int j ) const { return FEp((j+1)%3);} |
|
typename T::EdgePointer FEp2( int j ) const { return FEp((j+2)%3);} |
|
|
|
template <class RightValueType> |
|
void ImportData(const RightValueType & rightF){T::ImportData(rightF);} |
|
inline void Alloc(const int & ns){T::Alloc(ns);} |
|
inline void Dealloc(){T::Dealloc();} |
|
static bool HasFEAdjacency() { return true; } |
|
static void Name(std::vector<std::string> & name){name.push_back(std::string("FEAdj"));T::Name(name);} |
|
|
|
private: |
|
typename T::EdgePointer _fep[3] ; |
|
char _fei[3] ; |
|
}; |
|
|
|
|
|
/*----------------------------- FHADJ ------------------------------*/ |
|
template <class T> class FHAdj: public T { |
|
public: |
|
FHAdj(){_fh=0;} |
|
typename T::HEdgePointer &FHp( ) { return _fh; } |
|
typename T::HEdgePointer FHp( ) const { return _fh; } |
|
const typename T::HEdgePointer &cFHp( ) const { return _fh; } |
|
|
|
template <class RightValueType> |
|
void ImportData(const RightValueType & rightF){T::ImportData(rightF);} |
|
inline void Alloc(const int & ns){T::Alloc(ns);} |
|
inline void Dealloc(){T::Dealloc();} |
|
static bool HasFHAdjacency() { return true; } |
|
static void Name(std::vector<std::string> & name){name.push_back(std::string("FHAdj"));T::Name(name);} |
|
|
|
private: |
|
typename T::HEdgePointer _fh ; |
|
}; |
|
/** @} */ // End Doxygen FaceComponentGroup |
|
} // end namespace face |
|
}// end namespace vcg |
|
#endif
|
|
|