You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1364 lines
40 KiB
1364 lines
40 KiB
/**************************************************************************** |
|
* VCGLib o o * |
|
* Visual and Computer Graphics Library o o * |
|
* _ O _ * |
|
* Copyright(C) 2004-2016 \/)\/ * |
|
* Visual Computing Lab /\/| * |
|
* ISTI - Italian National Research Council | * |
|
* \ * |
|
* All rights reserved. * |
|
* * |
|
* This program is free software; you can redistribute it and/or modify * |
|
* it under the terms of the GNU General Public License as published by * |
|
* the Free Software Foundation; either version 2 of the License, or * |
|
* (at your option) any later version. * |
|
* * |
|
* This program is distributed in the hope that it will be useful, * |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of * |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * |
|
* for more details. * |
|
* * |
|
****************************************************************************/ |
|
|
|
#ifndef _VCG_FACE_TOPOLOGY |
|
#define _VCG_FACE_TOPOLOGY |
|
|
|
#include "pos.h" |
|
|
|
#include <vcg/complex/allocate.h> |
|
|
|
namespace vcg { |
|
namespace face { |
|
/** \addtogroup face */ |
|
/*@{*/ |
|
|
|
/** Return a boolean indicating if the face f is non manifold along edge j. |
|
@param j Index of the edge |
|
@return true if the face manifold, false otherwise |
|
*/ |
|
template <class FaceType> |
|
inline bool IsManifold( FaceType const & f, const int j ) |
|
{ |
|
assert(f.cFFp(j) != 0); // never try to use this on uninitialized topology |
|
if(FaceType::HasFFAdjacency()) |
|
return ( f.cFFp(j) == &f || &f == f.cFFp(j)->cFFp(f.cFFi(j)) ); |
|
else |
|
return true; |
|
} |
|
|
|
/** Return a boolean that indicate if the j-th edge of the face is a border. |
|
@param j Index of the edge |
|
@return true if j is an edge of border, false otherwise |
|
*/ |
|
template <class FaceType> |
|
inline bool IsBorder(FaceType const & f, const int j ) |
|
{ |
|
if(FaceType::HasFFAdjacency()) |
|
return f.cFFp(j)==&f; |
|
//return f.IsBorder(j); |
|
|
|
assert(0); |
|
return true; |
|
} |
|
|
|
/*! \brief Compute the signed dihedral angle between the normals of two adjacent faces |
|
* |
|
* The angle between the normal is signed according to the concavity/convexity of the |
|
* dihedral angle: negative if the edge shared between the two faces is concave, positive otherwise. |
|
* The surface must be oriented and faces must be oriented coherently. |
|
* It simply use the projection of the opposite vertex onto the plane of the other one. |
|
* It does not use stored face normals but it recomputes according the vertex ordering. |
|
* |
|
* v0 ___________ vf1 |
|
* |\ | |
|
* | \i1 f1 | |
|
* | \ | |
|
* |f0 i0\ | |
|
* | \ | |
|
* |__________\| |
|
* vf0 v1 |
|
*/ |
|
|
|
template <class FaceType> |
|
inline typename FaceType::ScalarType DihedralAngleRad(FaceType & f, const int i ) |
|
{ |
|
typedef typename FaceType::ScalarType ScalarType; |
|
typedef typename FaceType::CoordType CoordType; |
|
typedef typename FaceType::VertexType VertexType; |
|
|
|
FaceType *f0 = &f; |
|
FaceType *f1 = f.FFp(i); |
|
int i0=i; |
|
int i1=f.FFi(i); |
|
VertexType *vf0 = f0->V2(i0); |
|
VertexType *vf1 = f1->V2(i1); |
|
|
|
CoordType n0 = TriangleNormal(*f0).Normalize(); |
|
CoordType n1 = TriangleNormal(*f1).Normalize(); |
|
ScalarType off0 = n0*vf0->P(); |
|
ScalarType off1 = n1*vf1->P(); |
|
|
|
ScalarType dist01 = off0 - n0*vf1->P(); |
|
ScalarType dist10 = off1 - n1*vf0->P(); |
|
|
|
// just to be sure use the sign of the largest in absolute value; |
|
ScalarType sign; |
|
if(fabs(dist01) > fabs(dist10)) sign = dist01; |
|
else sign=dist10; |
|
|
|
ScalarType angleRad=AngleN(n0,n1); |
|
|
|
if(sign > 0 ) return angleRad; |
|
else return -angleRad; |
|
} |
|
|
|
/// Return the internal angle (in radians) of the i-th wedge of the triangle. |
|
template <class FaceType> |
|
inline typename FaceType::ScalarType WedgeAngleRad(FaceType & f, const int i ) |
|
{ |
|
auto &P0=f.P(i); |
|
auto &P1=f.P(f.Next(i)); |
|
auto &P2=f.P(f.Prev(i)); |
|
return vcg::Angle(P2 - P0,P1 - P0); |
|
} |
|
|
|
/// Count border edges of the face |
|
template <class FaceType> |
|
inline int BorderCount(FaceType const & f) |
|
{ |
|
if(FaceType::HasFFAdjacency()) |
|
{ |
|
int t = 0; |
|
if( IsBorder(f,0) ) ++t; |
|
if( IsBorder(f,1) ) ++t; |
|
if( IsBorder(f,2) ) ++t; |
|
return t; |
|
} |
|
else return 3; |
|
} |
|
|
|
|
|
/// Counts the number of incident faces in a complex edge |
|
template <class FaceType> |
|
inline int ComplexSize(FaceType & f, const int e) |
|
{ |
|
if(FaceType::HasFFAdjacency()) |
|
{ |
|
if(face::IsBorder<FaceType>(f,e)) return 1; |
|
if(face::IsManifold<FaceType>(f,e)) return 2; |
|
|
|
// Non manifold case |
|
Pos< FaceType > fpos(&f,e); |
|
int cnt=0; |
|
do |
|
{ |
|
fpos.NextF(); |
|
assert(!fpos.IsBorder()); |
|
assert(!fpos.IsManifold()); |
|
++cnt; |
|
} |
|
while(fpos.f!=&f); |
|
assert (cnt>2); |
|
return cnt; |
|
} |
|
assert(0); |
|
return 2; |
|
} |
|
|
|
|
|
/** This function check the FF topology correctness for an edge of a face. |
|
It's possible to use it also in non-two manifold situation. |
|
The function cannot be applied if the adjacencies among faces aren't defined. |
|
@param f the face to be checked |
|
@param e Index of the edge to be checked |
|
*/ |
|
template <class FaceType> |
|
bool FFCorrectness(FaceType & f, const int e) |
|
{ |
|
if(f.FFp(e)==0) return false; // Not computed or inconsistent topology |
|
|
|
if(f.FFp(e)==&f) // Border |
|
{ |
|
if(f.FFi(e)==e) return true; |
|
else return false; |
|
} |
|
|
|
if(f.FFp(e)->FFp(f.FFi(e))==&f) // plain two manifold |
|
{ |
|
if(f.FFp(e)->FFi(f.FFi(e))==e) return true; |
|
else return false; |
|
} |
|
|
|
// Non Manifold Case |
|
// all the faces must be connected in a loop. |
|
|
|
Pos< FaceType > curFace(&f,e); // Build the half edge |
|
int cnt=0; |
|
do |
|
{ |
|
if(curFace.IsManifold()) return false; |
|
if(curFace.IsBorder()) return false; |
|
curFace.NextF(); |
|
cnt++; |
|
assert(cnt<100); |
|
(void)cnt; |
|
} |
|
while ( curFace.f != &f); |
|
return true; |
|
} |
|
|
|
|
|
/** This function detach the face from the adjacent face along the edge e. |
|
It's possible to use this function it ONLY in non-two manifold situation. |
|
The function cannot be applied if the adjacencies among faces aren't defined. |
|
@param f the face to be detached |
|
@param e Index of the edge to be detached |
|
\note it updates border flag and faux flags (the detached edge has it border bit flagged and faux bit cleared) |
|
*/ |
|
template <class FaceType> |
|
void FFDetachManifold(FaceType & f, const int e) |
|
{ |
|
assert(FFCorrectness<FaceType>(f,e)); |
|
assert(!IsBorder<FaceType>(f,e)); // Never try to detach a border edge! |
|
FaceType *ffp = f.FFp(e); |
|
//int ffi=f.FFp(e); |
|
int ffi=f.FFi(e); |
|
|
|
f.FFp(e)=&f; |
|
f.FFi(e)=e; |
|
ffp->FFp(ffi)=ffp; |
|
ffp->FFi(ffi)=ffi; |
|
|
|
f.SetB(e); |
|
f.ClearF(e); |
|
ffp->SetB(ffi); |
|
ffp->ClearF(ffi); |
|
|
|
assert(FFCorrectness<FaceType>(f,e)); |
|
assert(FFCorrectness<FaceType>(*ffp,ffi)); |
|
} |
|
|
|
/** This function detach the face from the adjacent face via the edge e. |
|
It's possible to use it also in non-two manifold situation. |
|
The function cannot be applied if the adjacencies among faces aren't defined. |
|
@param f the face to be detached |
|
@param e Index of the edge to be detached |
|
*/ |
|
|
|
template <class FaceType> |
|
void FFDetach(FaceType & f, const int e) |
|
{ |
|
assert(FFCorrectness<FaceType>(f,e)); |
|
assert(!IsBorder<FaceType>(f,e)); // Never try to detach a border edge! |
|
int complexity=ComplexSize(f,e); |
|
(void) complexity; |
|
assert(complexity>0); |
|
vcg::face::Pos<FaceType> FirstFace(&f,e); // Build the half edge |
|
vcg::face::Pos<FaceType> LastFace(&f,e); // Build the half edge |
|
FirstFace.NextF(); |
|
LastFace.NextF(); |
|
int cnt=0; |
|
|
|
// then in case of non manifold face continue to advance LastFace |
|
// until I find it become the one that is before the one I want to detach |
|
|
|
while ( LastFace.f->FFp(LastFace.z) != &f) |
|
{ |
|
assert(ComplexSize(*LastFace.f,LastFace.z)==complexity); |
|
assert(!LastFace.IsManifold()); // We enter in this loop only if we are on a non manifold edge |
|
assert(!LastFace.IsBorder()); |
|
LastFace.NextF(); |
|
cnt++; |
|
assert(cnt<100); |
|
(void)cnt; |
|
} |
|
|
|
assert(LastFace.f->FFp(LastFace.z)==&f); |
|
assert(f.FFp(e)== FirstFace.f); |
|
|
|
// Now we link the last one to the first one, skipping the face to be detached; |
|
LastFace.f->FFp(LastFace.z) = FirstFace.f; |
|
LastFace.f->FFi(LastFace.z) = FirstFace.z; |
|
assert(ComplexSize(*LastFace.f,LastFace.z)==complexity-1); |
|
|
|
// At the end self-connect the chosen edge to make a border. |
|
f.FFp(e) = &f; |
|
f.FFi(e) = e; |
|
assert(ComplexSize(f,e)==1); |
|
|
|
assert(FFCorrectness<FaceType>(*LastFace.f,LastFace.z)); |
|
assert(FFCorrectness<FaceType>(f,e)); |
|
} |
|
|
|
|
|
|
|
/** This function attach the face (via the edge z1) to another face (via the edge z2). |
|
* It's possible to use it also in non-two manifold situation. |
|
* The function cannot be applied if the adjacencies among faces aren't defined. |
|
* @param f Pointer to the face |
|
* @param z1 Index of the edge |
|
* @param f2 Pointer to the face |
|
* @param z2 The edge of the face f2 |
|
*/ |
|
template <class FaceType> |
|
void FFAttach(FaceType &f, int z1, FaceType &f2, int z2) |
|
{ |
|
vcg::face::Pos< FaceType > EPB(&f2,z2); |
|
vcg::face::Pos< FaceType > TEPB = EPB;; |
|
// search the last face in the non manifold loop before the one to be attached |
|
EPB.NextF(); |
|
while( EPB.f != &f2) |
|
{ |
|
TEPB = EPB; |
|
EPB.NextF(); |
|
} |
|
// save the old values |
|
FaceType *f1prec = f.FFp(z1); |
|
int z1prec = f.FFi(z1); |
|
|
|
assert(f1prec == &f); |
|
assert(TEPB.f->FFp(TEPB.z) == &f2); |
|
f.FFp(z1) = TEPB.f->FFp(TEPB.z); |
|
f.FFi(z1) = TEPB.f->FFi(TEPB.z); |
|
|
|
TEPB.f->FFp(TEPB.z) = f1prec; |
|
TEPB.f->FFi(TEPB.z) = z1prec; |
|
assert(FFCorrectness<FaceType>(f,z1)); |
|
assert(FFCorrectness<FaceType>(*TEPB.f, TEPB.z)); |
|
} |
|
|
|
/** This function attach the face (via the edge z1) to another face (via the edge z2). |
|
It is not possible to use it also in non-two manifold situation. |
|
The function cannot be applied if the adjacencies among faces aren't defined. |
|
@param z1 Index of the edge |
|
@param f2 Pointer to the face |
|
@param z2 The edge of the face f2 |
|
*/ |
|
template <class FaceType> |
|
void FFAttachManifold(FaceType * f1, int z1, FaceType * f2, int z2) |
|
{ |
|
assert(IsBorder<FaceType>(*f1,z1) || f1->FFp(z1)==0); |
|
assert(IsBorder<FaceType>(*f2,z2) || f2->FFp(z2)==0); |
|
assert(f1->V0(z1) == f2->V0(z2) || f1->V0(z1) == f2->V1(z2)); |
|
assert(f1->V1(z1) == f2->V0(z2) || f1->V1(z1) == f2->V1(z2)); |
|
f1->FFp(z1) = f2; |
|
f1->FFi(z1) = z2; |
|
f2->FFp(z2) = f1; |
|
f2->FFi(z2) = z1; |
|
} |
|
|
|
// This one should be called only on uninitialized faces. |
|
template <class FaceType> |
|
void FFSetBorder(FaceType * f1, int z1) |
|
{ |
|
assert(f1->FFp(z1)==0 || IsBorder(*f1,z1)); |
|
|
|
f1->FFp(z1)=f1; |
|
f1->FFi(z1)=z1; |
|
} |
|
|
|
template <class FaceType> |
|
void AssertAdj(FaceType & f) |
|
{ |
|
(void)f; |
|
assert(f.FFp(0)->FFp(f.FFi(0))==&f); |
|
assert(f.FFp(1)->FFp(f.FFi(1))==&f); |
|
assert(f.FFp(2)->FFp(f.FFi(2))==&f); |
|
|
|
assert(f.FFp(0)->FFi(f.FFi(0))==0); |
|
assert(f.FFp(1)->FFi(f.FFi(1))==1); |
|
assert(f.FFp(2)->FFi(f.FFi(2))==2); |
|
} |
|
|
|
/** |
|
* Check if the given face is oriented as the one adjacent to the specified edge. |
|
* @param f Face to check the orientation |
|
* @param z Index of the edge |
|
*/ |
|
template <class FaceType> |
|
bool CheckOrientation(FaceType &f, int z) |
|
{ |
|
if (IsBorder(f, z)) |
|
return true; |
|
else |
|
{ |
|
FaceType *g = f.FFp(z); |
|
int gi = f.FFi(z); |
|
if (f.V0(z) == g->V1(gi)) |
|
return true; |
|
else |
|
return false; |
|
} |
|
} |
|
|
|
|
|
/** |
|
* This function change the clockwise/counterclockwise orientation of the face |
|
* by swapping the indexes of two vertex of the indicated edge. |
|
* @param z Index of the edge |
|
*/ |
|
template <class FaceType> |
|
void SwapEdge(FaceType &f, const int z) { SwapEdge<FaceType,true>(f,z); } |
|
|
|
template <class FaceType, bool UpdateTopology> |
|
void SwapEdge(FaceType &f, const int z) |
|
{ |
|
// swap V0(z) with V1(z) |
|
std::swap(f.V0(z), f.V1(z)); |
|
|
|
// Management of faux edge information (edge z is not affected) |
|
bool Faux1 = f.IsF((z+1)%3); |
|
bool Faux2 = f.IsF((z+2)%3); |
|
if(Faux1) f.SetF((z+2)%3); else f.ClearF((z+2)%3); |
|
if(Faux2) f.SetF((z+1)%3); else f.ClearF((z+1)%3); |
|
|
|
if(f.HasFFAdjacency() && UpdateTopology) |
|
{ |
|
// store information to preserve topology |
|
int z1 = (z+1)%3; |
|
int z2 = (z+2)%3; |
|
FaceType *g1p = f.FFp(z1); |
|
FaceType *g2p = f.FFp(z2); |
|
int g1i = f.FFi(z1); |
|
int g2i = f.FFi(z2); |
|
|
|
// g0 face topology is not affected by the swap |
|
|
|
if (g1p != &f) |
|
{ |
|
g1p->FFi(g1i) = z2; |
|
f.FFi(z2) = g1i; |
|
} |
|
else |
|
{ |
|
f.FFi(z2) = z2; |
|
} |
|
|
|
if (g2p != &f) |
|
{ |
|
g2p->FFi(g2i) = z1; |
|
f.FFi(z1) = g2i; |
|
} |
|
else |
|
{ |
|
f.FFi(z1) = z1; |
|
} |
|
|
|
// finalize swap |
|
f.FFp(z1) = g2p; |
|
f.FFp(z2) = g1p; |
|
} |
|
} |
|
|
|
/*! Perform a simple edge collapse |
|
* Basic link conditions to check if the collapse is topologically safe |
|
* this version uses only FF adjacency and assume that the mesh is manifold |
|
* |
|
*/ |
|
template <class FaceType> |
|
bool FFLinkCondition(FaceType &f, const int z) |
|
{ |
|
typedef typename FaceType::VertexType VertexType; |
|
typedef typename vcg::face::Pos< FaceType > PosType; |
|
|
|
VertexType *v0=f.V0(z); |
|
VertexType *v1=f.V1(z); |
|
|
|
PosType p0(&f,v0); |
|
PosType p1(&f,v1); |
|
std::vector<VertexType *>v0Vec; |
|
std::vector<VertexType *>v1Vec; |
|
VVOrderedStarFF(p0,v0Vec); |
|
VVOrderedStarFF(p1,v1Vec); |
|
std::set<VertexType *> v0set; |
|
v0set.insert(v0Vec.begin(),v0Vec.end()); |
|
assert(v0set.size() == v0Vec.size()); |
|
int cnt =0; |
|
for(size_t i=0;i<v1Vec.size();++i) |
|
if(v0set.find(v1Vec[i]) != v0set.end()) |
|
cnt++; |
|
|
|
if(face::IsBorder(f,z) && (cnt==1)) return true; |
|
if(!face::IsBorder(f,z) && (cnt==2)) return true; |
|
//assert(0); |
|
return false; |
|
} |
|
|
|
/*! \brief a simple edge collapse using only FF adjacency |
|
* |
|
* The edge z is collapsed and the vertex V(z) is collapsed onto the vertex V1(Z) |
|
* vertex V(z) is deleted and vertex V1(z) survives. |
|
* It assumes that the mesh is Manifold. |
|
* Note that it preserves manifoldness only if FFLinkConditions are satisfied |
|
* If the mesh is not manifold it will crash (there will be faces with deleted vertexes around) |
|
* f12 |
|
* surV ___________ |
|
* |\ | |
|
* | \ f1 | |
|
* f01 | \ z1 | f11 |
|
* | f0 z0\ | |
|
* | \ | |
|
* |__________\| |
|
* f02 delV |
|
*/ |
|
template <class MeshType> |
|
void FFEdgeCollapse(MeshType &m, typename MeshType::FaceType &f, const int z) |
|
{ |
|
typedef typename MeshType::FaceType FaceType; |
|
typedef typename MeshType::VertexType VertexType; |
|
typedef typename vcg::face::Pos< FaceType > PosType; |
|
FaceType *f0 = &f; |
|
int z0=z; |
|
FaceType *f1 = f.FFp(z); |
|
int z1=f.FFi(z); |
|
|
|
VertexType *delV=f.V0(z); |
|
VertexType *surV=f.V1(z); |
|
|
|
// Collect faces that have to be updated |
|
PosType delPos(f0,delV); |
|
std::vector<PosType> faceToBeChanged; |
|
VFOrderedStarFF(delPos,faceToBeChanged); |
|
|
|
// Topology Stitching |
|
FaceType *f01= 0,*f02= 0,*f11= 0,*f12= 0; |
|
int i01=-1, i02=-1, i11=-1, i12=-1; |
|
// Note that the faux bit is preserved only if both of the edges to be stiched are faux. |
|
bool f0Faux = f0->IsF((z0+1)%3) && f0->IsF((z0+2)%3); |
|
bool f1Faux = f1->IsF((z1+1)%3) && f1->IsF((z1+2)%3); |
|
|
|
if(!face::IsBorder(*f0,(z0+1)%3)) { f01 = f0->FFp((z0+1)%3); i01=f0->FFi((z0+1)%3); FFDetachManifold(*f0,(z0+1)%3);} |
|
if(!face::IsBorder(*f0,(z0+2)%3)) { f02 = f0->FFp((z0+2)%3); i02=f0->FFi((z0+2)%3); FFDetachManifold(*f0,(z0+2)%3);} |
|
if(!face::IsBorder(*f1,(z1+1)%3)) { f11 = f1->FFp((z1+1)%3); i11=f1->FFi((z1+1)%3); FFDetachManifold(*f1,(z1+1)%3);} |
|
if(!face::IsBorder(*f1,(z1+2)%3)) { f12 = f1->FFp((z1+2)%3); i12=f1->FFi((z1+2)%3); FFDetachManifold(*f1,(z1+2)%3);} |
|
|
|
// Final Pass to update the vertex ptrs in all the involved faces |
|
for(size_t i=0;i<faceToBeChanged.size();++i) { |
|
assert(faceToBeChanged[i].V() == delV); |
|
faceToBeChanged[i].F()->V(faceToBeChanged[i].VInd()) =surV; |
|
} |
|
|
|
if(f01 && f02) |
|
{ |
|
FFAttachManifold(f01,i01,f02,i02); |
|
if(f0Faux) {f01->SetF(i01); f02->SetF(i02);} |
|
} |
|
if(f11 && f12) { |
|
FFAttachManifold(f11,i11,f12,i12); |
|
if(f1Faux) {f11->SetF(i11); f12->SetF(i12);} |
|
} |
|
tri::Allocator<MeshType>::DeleteFace(m,*f0); |
|
if(f1!=f0) tri::Allocator<MeshType>::DeleteFace(m,*f1); |
|
tri::Allocator<MeshType>::DeleteVertex(m,*delV); |
|
} |
|
|
|
/*! |
|
* Perform a Geometric Check about the normals of a edge flip. |
|
* return trues if after the flip the normals does not change more than the given threshold angle; |
|
* it assumes that the flip is topologically correct. |
|
* |
|
* \param f the face |
|
* \param z the edge index |
|
* \param angleRad the threshold angle |
|
* |
|
* oldD1 ___________ newD1 |
|
* |\ | |
|
* | \ | |
|
* | \ | |
|
* | f z\ | |
|
* | \ | |
|
* |__________\| |
|
* newD0 oldD0 |
|
*/ |
|
|
|
template <class FaceType> |
|
bool CheckFlipEdgeNormal(FaceType &f, const int z, const float angleRad) |
|
{ |
|
typedef typename FaceType::VertexType VertexType; |
|
typedef typename VertexType::CoordType CoordType; |
|
|
|
VertexType *OldDiag0 = f.V0(z); |
|
VertexType *OldDiag1 = f.V1(z); |
|
|
|
VertexType *NewDiag0 = f.V2(z); |
|
VertexType *NewDiag1 = f.FFp(z)->V2(f.FFi(z)); |
|
|
|
assert((NewDiag1 != NewDiag0) && (NewDiag1 != OldDiag0) && (NewDiag1 != OldDiag1)); |
|
|
|
CoordType oldN0 = Normal( NewDiag0->cP(),OldDiag0->cP(),OldDiag1->cP()).Normalize(); |
|
CoordType oldN1 = Normal( NewDiag1->cP(),OldDiag1->cP(),OldDiag0->cP()).Normalize(); |
|
CoordType newN0 = Normal( OldDiag0->cP(),NewDiag1->cP(),NewDiag0->cP()).Normalize(); |
|
CoordType newN1 = Normal( OldDiag1->cP(),NewDiag0->cP(),NewDiag1->cP()).Normalize(); |
|
if(AngleN(oldN0,newN0) > angleRad) return false; |
|
if(AngleN(oldN0,newN1) > angleRad) return false; |
|
if(AngleN(oldN1,newN0) > angleRad) return false; |
|
if(AngleN(oldN1,newN1) > angleRad) return false; |
|
|
|
return true; |
|
} |
|
|
|
/*! |
|
* Perform a Topological check to see if the z-th edge of the face f can be flipped. |
|
* No Geometric test are done. (see CheckFlipEdgeNormal) |
|
* \param f pointer to the face |
|
* \param z the edge index |
|
*/ |
|
template <class FaceType> |
|
bool CheckFlipEdge(FaceType &f, int z) |
|
{ |
|
typedef typename FaceType::VertexType VertexType; |
|
typedef typename vcg::face::Pos< FaceType > PosType; |
|
|
|
if (z<0 || z>2) return false; |
|
|
|
// boundary edges cannot be flipped |
|
if (face::IsBorder(f, z)) return false; |
|
|
|
FaceType *g = f.FFp(z); |
|
int w = f.FFi(z); |
|
|
|
// check if the vertices of the edge are the same |
|
// e.g. the mesh has to be well oriented |
|
if (g->V(w)!=f.V1(z) || g->V1(w)!=f.V(z) ) |
|
return false; |
|
|
|
// check if the flipped edge is already present in the mesh |
|
// f_v2 and g_v2 are the vertices of the new edge |
|
VertexType *f_v2 = f.V2(z); |
|
VertexType *g_v2 = g->V2(w); |
|
|
|
// just a sanity check. If this happens the mesh is not manifold. |
|
if (f_v2 == g_v2) return false; |
|
|
|
// Now walk around f_v2, one of the two vertexes of the new edge |
|
// and check that it does not already exists. |
|
|
|
PosType pos(&f, (z+2)%3, f_v2); |
|
PosType startPos=pos; |
|
do |
|
{ |
|
pos.NextE(); |
|
if (g_v2 == pos.VFlip()) |
|
return false; |
|
} |
|
while (pos != startPos); |
|
|
|
return true; |
|
} |
|
|
|
template <class FaceType> |
|
bool checkFlipEdgeNotManifold (FaceType &f, const int z) |
|
{ |
|
typedef typename FaceType::VertexType VertexType; |
|
typedef typename vcg::face::Pos< FaceType > PosType; |
|
if (z<0 || z>2) return false; |
|
|
|
// boundary edges cannot be flipped |
|
if (vcg::face::IsBorder(f, z)) return false; |
|
|
|
FaceType *g = f.FFp(z); |
|
int w = f.FFi(z); |
|
|
|
// check if the vertices of the edge are the same |
|
// e.g. the mesh has to be well oriented |
|
if (g->V(w)!=f.V1(z) || g->V1(w)!=f.V(z) ) |
|
return false; |
|
|
|
// check if the flipped edge is already present in the mesh |
|
// f_v2 and g_v2 are the vertices of the new edge |
|
VertexType *f_v2 = f.V2(z); |
|
VertexType *g_v2 = g->V2(w); |
|
|
|
PosType pos(&f, (z+2)%3, f_v2); |
|
PosType startPos=pos; |
|
do |
|
{ |
|
pos.FlipE(); |
|
pos.NextF(); |
|
// if (g_v2 == pos.F()->V((pos.E()+1) % 3)) |
|
if (g_v2 == pos.VFlip()) |
|
return false; |
|
} |
|
while (pos != startPos); |
|
|
|
return true; |
|
|
|
} |
|
|
|
/*! |
|
* Flip the z-th edge of the face f. |
|
* Check for topological correctness first using <CODE>CheckFlipEdge()</CODE>. |
|
* \param f pointer to the face |
|
* \param z the edge index |
|
* |
|
* Note: For <em>edge flip</em> we intend the swap of the diagonal of the quadrilater |
|
* formed by the face \a f and the face adjacent to the specified edge. |
|
* |
|
* 0__________ 2 0__________2 |
|
* -> 1|\ | | /|1 |
|
* | \ g | | g / | |
|
* | \ | |w / | |
|
* | f z\w | | / f z| |
|
* | \ | | / | |
|
* |__________\|1 <- 1|/__________| |
|
* 2 0 2 0 |
|
* |
|
* Note that, after an operation FlipEdge(f,z) |
|
* to topologically revert it should be sufficient to do FlipEdge(f,z+1) |
|
* (even if the mesh is actually different: f and g will be swapped) |
|
* |
|
*/ |
|
|
|
template <class FaceType> |
|
void FlipEdge(FaceType &f, const int z) |
|
{ |
|
assert(z>=0); |
|
assert(z<3); |
|
assert( !IsBorder(f,z) ); |
|
assert( face::IsManifold<FaceType>(f, z)); |
|
|
|
FaceType *g = f.FFp(z); // The other face |
|
int w = f.FFi(z); // and other side |
|
|
|
assert( g->V0(w) == f.V1(z) ); |
|
assert( g->V1(w) == f.V0(z) ); |
|
assert( g->V2(w) != f.V0(z) ); |
|
assert( g->V2(w) != f.V1(z) ); |
|
assert( g->V2(w) != f.V2(z) ); |
|
|
|
f.V1(z) = g->V2(w); |
|
g->V1(w) = f.V2(z); |
|
|
|
//topology update |
|
|
|
|
|
f.FFp(z) = g->FFp((w+1)%3); |
|
f.FFi(z) = g->FFi((w+1)%3); |
|
g->FFp(w) = f.FFp((z+1)%3); |
|
g->FFi(w) = f.FFi((z+1)%3); |
|
|
|
f.FFp((z+1)%3) = g; |
|
f.FFi((z+1)%3) = (w+1)%3; |
|
g->FFp((w+1)%3) = &f; |
|
g->FFi((w+1)%3) = (z+1)%3; |
|
|
|
if(f.FFp(z)==g) |
|
{ |
|
f.FFp(z) = &f; |
|
f.FFi(z) = z; |
|
} |
|
else |
|
{ |
|
f.FFp(z)->FFp( f.FFi(z) ) = &f; |
|
f.FFp(z)->FFi( f.FFi(z) ) = z; |
|
} |
|
if(g->FFp(w)==&f) |
|
{ |
|
g->FFp(w)=g; |
|
g->FFi(w)=w; |
|
} |
|
else |
|
{ |
|
g->FFp(w)->FFp( g->FFi(w) ) = g; |
|
g->FFp(w)->FFi( g->FFi(w) ) = w; |
|
} |
|
|
|
} |
|
|
|
/*! |
|
* Flip the z-th edge of the face f. |
|
* Check for topological correctness first using <CODE>CheckFlipEdge()</CODE>. |
|
* \param f pointer to the face |
|
* \param z the edge index |
|
* |
|
* Note: For <em>edge flip</em> we intend the swap of the diagonal of the quadrilater |
|
* formed by the face \a f and the face adjacent to the specified edge. |
|
* |
|
* 0__________ 2 0__________2 |
|
* -> 1|\ | | /|1 |
|
* | \ g | | g / | |
|
* | \ | |w / | |
|
* | f z\w | | / f z| |
|
* | \ | | / | |
|
* |__________\|1 <- 1|/__________| |
|
* 2 0 2 0 |
|
* |
|
* Note that, after an operation FlipEdge(f,z) |
|
* to topologically revert it should be sufficient to do FlipEdge(f,z+1) |
|
* (even if the mesh is actually different: f and g will be swapped) |
|
* |
|
*/ |
|
template <class FaceType> |
|
void FlipEdgeNotManifold(FaceType &f, const int z) |
|
{ |
|
assert(z>=0); |
|
assert(z<3); |
|
assert( !IsBorder(f,z) ); |
|
assert( face::IsManifold<FaceType>(f, z)); |
|
|
|
FaceType *g = f.FFp(z); // The other face |
|
int w = f.FFi(z); // and other side |
|
|
|
assert( g->V0(w) == f.V1(z) ); |
|
assert( g->V1(w) == f.V0(z) ); |
|
assert( g->V2(w) != f.V0(z) ); |
|
assert( g->V2(w) != f.V1(z) ); |
|
assert( g->V2(w) != f.V2(z) ); |
|
|
|
int fi1 = f.FFi(f.Next(z)); |
|
FaceType* fp1 = f.FFp(f.Next(z)); |
|
|
|
int gi1 = g->FFi(g->Next(w)); |
|
FaceType* gp1 = g->FFp(g->Next(w)); |
|
|
|
|
|
FFDetach(f, z); |
|
if (!IsBorder(f, (z+1)%3)) |
|
FFDetach(f, (z+1)%3); |
|
if (!IsBorder(*g, (w+1)%3)) |
|
FFDetach(*g, (w+1)%3); |
|
|
|
f.V1(z) = g->V2(w); |
|
g->V1(w) = f.V2(z); |
|
|
|
//topology update |
|
FaceType* ftmp = &f; |
|
|
|
if (gp1 != g) |
|
FFAttach(f, z, *gp1, gi1); |
|
if (fp1 != &f) |
|
FFAttach(*g, w, *fp1, fi1); |
|
|
|
FFAttachManifold(ftmp, (z+1)%3, g, (w+1)%3); |
|
} |
|
|
|
/*! |
|
* Given a face it splits into three face with a mid vertex |
|
* No allocation is done here, a new vertex and two new faces are needed |
|
*/ |
|
|
|
template <class FaceType> |
|
void TriSplit(FaceType *fToSplit, FaceType *newf0, FaceType *newf1, typename FaceType::VertexType *newVert) |
|
{ |
|
typedef typename FaceType::VertexType VertexType; |
|
|
|
VertexType *vp0 = fToSplit->V(0); |
|
VertexType *vp1 = fToSplit->V(1); |
|
VertexType *vp2 = fToSplit->V(2); |
|
|
|
fToSplit->V(0) = vp0; fToSplit->V(1) = vp1; fToSplit->V(2) = newVert; |
|
newf0->V(0) = vp1; newf0->V(1) = vp2; newf0->V(2) = newVert; |
|
newf1->V(0) = vp2; newf1->V(1) = vp0; newf1->V(2) = newVert; |
|
} |
|
|
|
/*! |
|
* Detach the face f from the all the VF adjacency lists of its vertices. |
|
* It is used by edge collapse before deleting the collapsed faces. |
|
* \param f face to be detached |
|
*/ |
|
|
|
template <class FaceType> |
|
void VFDetach(FaceType & f) |
|
{ |
|
VFDetach(f,0); |
|
VFDetach(f,1); |
|
VFDetach(f,2); |
|
} |
|
|
|
/*! |
|
* Detach the face f from the VF adjacency list of the faces incident on the z-th vertex. |
|
* \param f face to be detached |
|
* \param z the vertex index |
|
* |
|
*/ |
|
template <class FaceType> |
|
void VFDetach(FaceType & f, int z) |
|
{ |
|
if(f.V(z)->VFp()==&f ) // if it is the first face detach from the begin |
|
{ |
|
int fz = f.V(z)->VFi(); |
|
f.V(z)->VFp() = f.VFp(fz); |
|
f.V(z)->VFi() = f.VFi(fz); |
|
} |
|
else // scan the list of faces in order to find the current face f to be detached |
|
{ |
|
VFIterator<FaceType> x(f.V(z)->VFp(),f.V(z)->VFi()); |
|
VFIterator<FaceType> y; |
|
|
|
for(;;) |
|
{ |
|
y = x; |
|
++x; |
|
assert(x.f!=0); |
|
if(x.f==&f) // found! |
|
{ |
|
y.f->VFp(y.z) = f.VFp(z); |
|
y.f->VFi(y.z) = f.VFi(z); |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/// Append a face in VF list of vertex f->V(z) |
|
template <class FaceType> |
|
void VFAppend(FaceType * f, int z) |
|
{ |
|
typename FaceType::VertexType *v = f->V(z); |
|
if (v->VFp()!=0) |
|
{ |
|
FaceType *f0=v->VFp(); |
|
int z0=v->VFi(); |
|
//append |
|
f->VFp(z)=f0; |
|
f->VFi(z)=z0; |
|
} |
|
v->VFp()=f; |
|
v->VFi()=z; |
|
} |
|
|
|
/*! |
|
* \brief Compute the set of vertices adjacent to a given vertex using VF adjacency |
|
* |
|
* \param vp pointer to the vertex whose star has to be computed. |
|
* \param starVec a std::vector of Vertex pointer that is filled with the adjacent vertices. |
|
* |
|
*/ |
|
|
|
template <class FaceType> |
|
void VVStarVF( typename FaceType::VertexType* vp, std::vector<typename FaceType::VertexType *> &starVec) |
|
{ |
|
typedef typename FaceType::VertexType* VertexPointer; |
|
starVec.clear(); |
|
starVec.reserve(16); |
|
face::VFIterator<FaceType> vfi(vp); |
|
while(!vfi.End()) |
|
{ |
|
const int vn = vfi.F()->VN(); |
|
starVec.push_back(vfi.F()->V1(vfi.I())); |
|
starVec.push_back(vfi.F()->V((vfi.I()+vn-1)%vn)); |
|
++vfi; |
|
} |
|
|
|
std::sort(starVec.begin(),starVec.end()); |
|
typename std::vector<VertexPointer>::iterator new_end = std::unique(starVec.begin(),starVec.end()); |
|
starVec.resize(new_end-starVec.begin()); |
|
} |
|
|
|
/*! |
|
* \brief Compute the set of vertices adjacent to a given vertex using VF adjacency. |
|
* |
|
* The set is faces is extended of a given number of step |
|
* \param vp pointer to the vertex whose star has to be computed. |
|
* \param num_step the number of step to extend the star |
|
* \param vertVec a std::vector of Ve pointer that is filled with the adjacent faces. |
|
*/ |
|
template <class FaceType> |
|
void VVExtendedStarVF(typename FaceType::VertexType* vp, |
|
const int num_step, |
|
std::vector<typename FaceType::VertexType *> &vertVec) |
|
{ |
|
typedef typename FaceType::VertexType VertexType; |
|
///initialize front |
|
vertVec.clear(); |
|
vcg::face::VVStarVF<FaceType>(vp,vertVec); |
|
///then dilate front |
|
///for each step |
|
for (int step=0;step<num_step-1;step++) |
|
{ |
|
std::vector<VertexType *> toAdd; |
|
for (unsigned int i=0;i<vertVec.size();i++) |
|
{ |
|
std::vector<VertexType *> Vtemp; |
|
vcg::face::VVStarVF<FaceType>(vertVec[i],Vtemp); |
|
toAdd.insert(toAdd.end(),Vtemp.begin(),Vtemp.end()); |
|
} |
|
vertVec.insert(vertVec.end(),toAdd.begin(),toAdd.end()); |
|
std::sort(vertVec.begin(),vertVec.end()); |
|
typename std::vector<typename FaceType::VertexType *>::iterator new_end=std::unique(vertVec.begin(),vertVec.end()); |
|
int dist=distance(vertVec.begin(),new_end); |
|
vertVec.resize(dist); |
|
} |
|
} |
|
|
|
/*! |
|
* \brief Compute the set of faces adjacent to a given vertex using VF adjacency. |
|
* |
|
* \param vp pointer to the vertex whose star has to be computed. |
|
* \param faceVec a std::vector of Face pointer that is filled with the adjacent faces. |
|
* \param indexes a std::vector of integer of the vertex as it is seen from the faces |
|
*/ |
|
template <class FaceType> |
|
void VFStarVF( typename FaceType::VertexType* vp, |
|
std::vector<FaceType *> &faceVec, |
|
std::vector<int> &indexes) |
|
{ |
|
faceVec.clear(); |
|
indexes.clear(); |
|
faceVec.reserve(16); |
|
indexes.reserve(16); |
|
face::VFIterator<FaceType> vfi(vp); |
|
while(!vfi.End()) |
|
{ |
|
faceVec.push_back(vfi.F()); |
|
indexes.push_back(vfi.I()); |
|
++vfi; |
|
} |
|
} |
|
|
|
|
|
/*! |
|
* \brief Compute the set of faces incident onto a given edge using FF adjacency. |
|
* |
|
* \param fp pointer to the face whose star has to be computed |
|
* \param ei the index of the edge |
|
* \param faceVec a std::vector of Face pointer that is filled with the faces incident on that edge. |
|
* \param indexes a std::vector of integer of the edge position as it is seen from the faces |
|
*/ |
|
template <class FaceType> |
|
void EFStarFF( FaceType* fp, int ei, |
|
std::vector<FaceType *> &faceVec, |
|
std::vector<int> &indVed) |
|
{ |
|
assert(fp->FFp(ei)!=0); |
|
faceVec.clear(); |
|
indVed.clear(); |
|
FaceType* fpit=fp; |
|
int eit=ei; |
|
do |
|
{ |
|
faceVec.push_back(fpit); |
|
indVed.push_back(eit); |
|
FaceType *new_fpit = fpit->FFp(eit); |
|
int new_eit = fpit->FFi(eit); |
|
fpit=new_fpit; |
|
eit=new_eit; |
|
} while(fpit != fp); |
|
} |
|
|
|
|
|
/* Compute the set of faces adjacent to a given face using FF adjacency. |
|
* The set is faces is extended of a given number of step |
|
* \param fp pointer to the face whose star has to be computed. |
|
* \param num_step the number of step to extend the star |
|
* \param faceVec a std::vector of Face pointer that is filled with the adjacent faces. |
|
*/ |
|
template <class FaceType> |
|
static void FFExtendedStarFF(FaceType *fp, |
|
const int num_step, |
|
std::vector<FaceType*> &faceVec) |
|
{ |
|
///initialize front |
|
faceVec.push_back(fp); |
|
///then dilate front |
|
///for each step |
|
for (int step=0;step<num_step;step++) |
|
{ |
|
std::vector<FaceType*> toAdd; |
|
for (unsigned int i=0;i<faceVec.size();i++) |
|
{ |
|
FaceType *f=faceVec[i]; |
|
for (int k=0;k<3;k++) |
|
{ |
|
FaceType *f1=f->FFp(k); |
|
if (f1==f)continue; |
|
toAdd.push_back(f1); |
|
} |
|
} |
|
faceVec.insert(faceVec.end(),toAdd.begin(),toAdd.end()); |
|
std::sort(faceVec.begin(),faceVec.end()); |
|
typename std::vector<FaceType*>::iterator new_end=std::unique(faceVec.begin(),faceVec.end()); |
|
int dist=distance(faceVec.begin(),new_end); |
|
faceVec.resize(dist); |
|
} |
|
} |
|
|
|
/*! |
|
* \brief Compute the set of faces adjacent to a given vertex using VF adjacency. |
|
* |
|
* The set is faces is extended of a given number of step |
|
* \param vp pointer to the vertex whose star has to be computed. |
|
* \param num_step the number of step to extend the star |
|
* \param faceVec a std::vector of Face pointer that is filled with the adjacent faces. |
|
*/ |
|
template <class FaceType> |
|
void VFExtendedStarVF(typename FaceType::VertexType* vp, |
|
const int num_step, |
|
std::vector<FaceType*> &faceVec) |
|
{ |
|
///initialize front |
|
faceVec.clear(); |
|
std::vector<int> indexes; |
|
vcg::face::VFStarVF<FaceType>(vp,faceVec,indexes); |
|
///then dilate front |
|
///for each step |
|
for (int step=0;step<num_step;step++) |
|
{ |
|
std::vector<FaceType*> toAdd; |
|
for (unsigned int i=0;i<faceVec.size();i++) |
|
{ |
|
FaceType *f=faceVec[i]; |
|
for (int k=0;k<3;k++) |
|
{ |
|
FaceType *f1=f->FFp(k); |
|
if (f1==f)continue; |
|
toAdd.push_back(f1); |
|
} |
|
} |
|
faceVec.insert(faceVec.end(),toAdd.begin(),toAdd.end()); |
|
std::sort(faceVec.begin(),faceVec.end()); |
|
typename std::vector<FaceType*>::iterator new_end=std::unique(faceVec.begin(),faceVec.end()); |
|
int dist=distance(faceVec.begin(),new_end); |
|
faceVec.resize(dist); |
|
} |
|
} |
|
|
|
/*! |
|
* \brief Compute the ordered set of vertices adjacent to a given vertex using FF adjacency |
|
* |
|
* \param startPos a Pos<FaceType> indicating the vertex whose star has to be computed. |
|
* \param vertexVec a std::vector of VertexPtr filled vertices around the given vertex. |
|
* |
|
*/ |
|
template <class FaceType> |
|
void VVOrderedStarFF(const Pos<FaceType> &startPos, |
|
std::vector<typename FaceType::VertexType *> &vertexVec) |
|
{ |
|
vertexVec.clear(); |
|
vertexVec.reserve(16); |
|
std::vector<Pos<FaceType> > posVec; |
|
VFOrderedStarFF(startPos,posVec); |
|
for(size_t i=0;i<posVec.size();++i) |
|
vertexVec.push_back(posVec[i].VFlip()); |
|
} |
|
|
|
/*! |
|
* \brief Compute the ordered set of vertices adjacent to a given vertex using FF adjacency |
|
* |
|
* \param startPos a Pos<FaceType> indicating the vertex whose star has to be computed. |
|
* \param vertexVec a std::vector of VertexPtr filled vertices around the given vertex. |
|
* \param ccw if true returns the vertexVec in counterclockwise order; if false in clockwise order. |
|
* |
|
*/ |
|
template <class FaceType> |
|
void VVOrderedStarFF(const Pos<FaceType> &startPos, |
|
std::vector<typename FaceType::VertexType *> &vertexVec, |
|
const bool ccw) |
|
{ |
|
vertexVec.clear(); |
|
vertexVec.reserve(16); |
|
std::vector<Pos<FaceType> > posVec; |
|
VFOrderedStarFF(startPos,posVec,ccw); |
|
for(size_t i=0;i<posVec.size();++i) |
|
vertexVec.push_back(posVec[i].VFlip()); |
|
} |
|
|
|
/*! |
|
* \brief Compute the ordered set of faces adjacent to a given vertex using FF adjacency |
|
* |
|
* \param startPos a Pos<FaceType> indicating the vertex whose star has to be computed. |
|
* \param posVec a std::vector of Pos filled with Pos arranged around the passed vertex. |
|
* |
|
*/ |
|
template <class FaceType> |
|
void VFOrderedStarFF(const Pos<FaceType> &startPos, |
|
std::vector<Pos<FaceType> > &posVec) |
|
{ |
|
posVec.clear(); |
|
posVec.reserve(16); |
|
bool foundBorder=false; |
|
size_t firstBorderInd; |
|
Pos<FaceType> curPos=startPos; |
|
do |
|
{ |
|
assert(curPos.IsManifold()); |
|
if(curPos.IsBorder() && !foundBorder) { |
|
foundBorder=true; |
|
firstBorderInd = posVec.size(); |
|
} |
|
posVec.push_back(curPos); |
|
curPos.FlipF(); |
|
curPos.FlipE(); |
|
} while(curPos!=startPos); |
|
// if we found a border we visited each face exactly twice, |
|
// and we have to extract the border-to-border pos sequence |
|
if(foundBorder) |
|
{ |
|
size_t halfSize=posVec.size()/2; |
|
assert((posVec.size()%2)==0); |
|
posVec.erase(posVec.begin()+firstBorderInd+1+halfSize, posVec.end()); |
|
posVec.erase(posVec.begin(),posVec.begin()+firstBorderInd+1); |
|
assert(posVec.size()==halfSize); |
|
} |
|
} |
|
|
|
/*! |
|
* \brief Compute the ordered set of faces adjacent to a given vertex using FF adjacency |
|
* |
|
* \param startPos a Pos<FaceType> indicating the vertex whose star has to be computed. |
|
* \param posVec a std::vector of Pos filled with Pos arranged around the passed vertex. |
|
* \param ccw if true returns the posVec in counterclockwise order; if false in clockwise order. |
|
* |
|
*/ |
|
template <class FaceType> |
|
void VFOrderedStarFF(const Pos<FaceType> &startPos, |
|
std::vector<Pos<FaceType> > &posVec, |
|
const bool ccw) |
|
{ |
|
VFOrderedStarFF(startPos, posVec); |
|
const auto & pos = posVec[0]; |
|
//if (ccw != (pos.VFlip() == pos.F()->V(pos.F()->Prev(pos.VInd())))) |
|
if ((ccw) == (pos.V()!=pos.F()->V(pos.E()))) |
|
{ |
|
std::reverse(posVec.begin(), posVec.end()); |
|
} |
|
} |
|
|
|
/*! |
|
* \brief Compute the ordered set of faces adjacent to a given vertex using FF adjacency |
|
* |
|
* \param startPos a Pos<FaceType> indicating the vertex whose star has to be computed. |
|
* \param faceVec a std::vector of Face pointer that is filled with the adjacent faces. |
|
* \param edgeVec a std::vector of indexes filled with the indexes of the corresponding edges shared between the faces. |
|
* |
|
*/ |
|
|
|
template <class FaceType> |
|
void VFOrderedStarFF(const Pos<FaceType> &startPos, |
|
std::vector<FaceType*> &faceVec, |
|
std::vector<int> &edgeVec) |
|
{ |
|
std::vector<Pos<FaceType> > posVec; |
|
VFOrderedStarFF(startPos,posVec); |
|
faceVec.clear(); |
|
edgeVec.clear(); |
|
faceVec.reserve(16); |
|
edgeVec.reserve(16); |
|
for(size_t i=0;i<posVec.size();++i) |
|
{ |
|
faceVec.push_back(posVec[i].F()); |
|
edgeVec.push_back(posVec[i].E()); |
|
} |
|
} |
|
|
|
/*! |
|
* Check if two faces share and edge through the FF topology. |
|
* \param f0,f1 the two face to be checked |
|
* \param i0,i1 the index of the shared edge; |
|
*/ |
|
|
|
template <class FaceType> |
|
bool ShareEdgeFF(FaceType *f0,FaceType *f1, int *i0=0, int *i1=0) |
|
{ |
|
assert((!f0->IsD())&&(!f1->IsD())); |
|
for (int i=0;i<3;i++) |
|
if (f0->FFp(i)==f1) |
|
{ |
|
if((i0!=0) && (i1!=0)) { |
|
*i0=i; |
|
*i1=f0->FFi(i); |
|
} |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
/*! |
|
* Count the number of vertices shared between two faces. |
|
* \param f0,f1 the two face to be checked |
|
* ; |
|
*/ |
|
template <class FaceType> |
|
int CountSharedVertex(FaceType *f0,FaceType *f1) |
|
{ |
|
int sharedCnt=0; |
|
for (int i=0;i<3;i++) |
|
for (int j=0;j<3;j++) |
|
if (f0->V(i)==f1->V(j)) { |
|
sharedCnt++; |
|
} |
|
return sharedCnt; |
|
} |
|
|
|
/*! |
|
* Find the first shared vertex between two faces. |
|
* \param f0,f1 the two face to be checked |
|
* \param i,j the indexes of the shared vertex in the two faces. Meaningful only if there is one single shared vertex |
|
* ; |
|
*/ |
|
template <class FaceType> |
|
bool FindSharedVertex(FaceType *f0,FaceType *f1, int &i, int &j) |
|
{ |
|
for (i=0;i<3;i++) |
|
for (j=0;j<3;j++) |
|
if (f0->V(i)==f1->V(j)) return true; |
|
|
|
i=-1;j=-1; |
|
return false; |
|
} |
|
|
|
/*! |
|
* find the first shared edge between two faces. |
|
* \param f0,f1 the two face to be checked |
|
* \param i,j the indexes of the shared edge in the two faces. Meaningful only if there is a shared edge |
|
* |
|
*/ |
|
template <class FaceType> |
|
bool FindSharedEdge(FaceType *f0,FaceType *f1, int &i, int &j) |
|
{ |
|
for (i=0;i<3;i++) |
|
for (j=0;j<3;j++) |
|
if( ( f0->V0(i)==f1->V0(j) || f0->V0(i)==f1->V1(j) ) && |
|
( f0->V1(i)==f1->V0(j) || f0->V1(i)==f1->V1(j) ) ) |
|
return true; |
|
i=-1;j=-1; |
|
return false; |
|
} |
|
|
|
/*! |
|
* Find the two faces that shares the two vertices |
|
* \param v0,v1 the two vertices |
|
* \param f0,f1 the two faces in counterclockwise order |
|
* |
|
* Assume that the mesh is manifold and the edge connecting the two vertices is internal. |
|
*/ |
|
template <class FaceType> |
|
bool FindSharedFaces(typename FaceType::VertexType *v0, |
|
typename FaceType::VertexType *v1, |
|
FaceType *&f0, |
|
FaceType *&f1, |
|
int &e0, |
|
int &e1) |
|
{ |
|
std::vector<FaceType*> faces0; |
|
std::vector<FaceType*> faces1; |
|
std::vector<int> index0; |
|
std::vector<int> index1; |
|
VFStarVF<FaceType>(v0,faces0,index0); |
|
VFStarVF<FaceType>(v1,faces1,index1); |
|
///then find the intersection |
|
std::sort(faces0.begin(),faces0.end()); |
|
std::sort(faces1.begin(),faces1.end()); |
|
std::vector<FaceType*> Intersection; |
|
std::set_intersection(faces0.begin(),faces0.end(),faces1.begin(),faces1.end(),std::back_inserter(Intersection)); |
|
if (Intersection.size()<2)return false; // no pair of faces share the 2 vertices |
|
assert(Intersection.size()==2); // otherwise non manifoldness |
|
f0=Intersection[0]; |
|
f1=Intersection[1]; |
|
FindSharedEdge(f0,f1,e0,e1); |
|
// and finally check if the order is right |
|
if (f0->V(e0)!=v0) |
|
{ |
|
std::swap(f0,f1); |
|
std::swap(e0,e1); |
|
} |
|
return true; |
|
} |
|
|
|
/*@}*/ |
|
} // end namespace |
|
} // end namespace |
|
|
|
#endif |
|
|
|
|