You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
625 lines
20 KiB
625 lines
20 KiB
/**************************************************************************** |
|
* VCGLib o o * |
|
* Visual and Computer Graphics Library o o * |
|
* _ O _ * |
|
* Copyright(C) 2004-2016 \/)\/ * |
|
* Visual Computing Lab /\/| * |
|
* ISTI - Italian National Research Council | * |
|
* \ * |
|
* All rights reserved. * |
|
* * |
|
* This program is free software; you can redistribute it and/or modify * |
|
* it under the terms of the GNU General Public License as published by * |
|
* the Free Software Foundation; either version 2 of the License, or * |
|
* (at your option) any later version. * |
|
* * |
|
* This program is distributed in the hope that it will be useful, * |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of * |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * |
|
* for more details. * |
|
* * |
|
****************************************************************************/ |
|
/**************************************************************************** |
|
History |
|
|
|
$Log: not supported by cvs2svn $ |
|
Revision 1.2 2005/10/24 09:19:33 ponchio |
|
Added newline at end of file (tired of stupid warnings...) |
|
|
|
Revision 1.1 2004/04/26 12:33:59 ganovelli |
|
first version |
|
|
|
****************************************************************************/ |
|
#ifndef __VCGLIB_INTERSECTIONTRITRI3 |
|
#define __VCGLIB_INTERSECTIONTRITRI3 |
|
|
|
#include <vcg/space/point3.h> |
|
#include <math.h> |
|
|
|
|
|
namespace vcg { |
|
|
|
/** \addtogroup space */ |
|
/*@{*/ |
|
/** |
|
Triangle/triangle intersection ,based on the algorithm presented in "A Fast Triangle-Triangle Intersection Test", |
|
Journal of Graphics Tools, 2(2), 1997 |
|
*/ |
|
#ifndef FABS |
|
#define FABS(x) (T(fabs(x))) |
|
#endif |
|
#define USE_EPSILON_TEST |
|
#define TRI_TRI_INT_EPSILON 0.000001 |
|
|
|
|
|
|
|
#define CROSS(dest,v1,v2){ \ |
|
dest[0]=v1[1]*v2[2]-v1[2]*v2[1]; \ |
|
dest[1]=v1[2]*v2[0]-v1[0]*v2[2]; \ |
|
dest[2]=v1[0]*v2[1]-v1[1]*v2[0];} |
|
|
|
#define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2]) |
|
|
|
#define SUB(dest,v1,v2){ \ |
|
dest[0]=v1[0]-v2[0]; \ |
|
dest[1]=v1[1]-v2[1]; \ |
|
dest[2]=v1[2]-v2[2];} |
|
|
|
|
|
#define SORT(a,b) \ |
|
if(a>b) \ |
|
{ \ |
|
T c; \ |
|
c=a; \ |
|
a=b; \ |
|
b=c; \ |
|
} |
|
|
|
|
|
#define EDGE_EDGE_TEST(V0,U0,U1) \ |
|
Bx=U0[i0]-U1[i0]; \ |
|
By=U0[i1]-U1[i1]; \ |
|
Cx=V0[i0]-U0[i0]; \ |
|
Cy=V0[i1]-U0[i1]; \ |
|
f=Ay*Bx-Ax*By; \ |
|
d=By*Cx-Bx*Cy; \ |
|
if((f>0 && d>=0 && d<=f) || (f<0 && d<=0 && d>=f)) \ |
|
{ \ |
|
e=Ax*Cy-Ay*Cx; \ |
|
if(f>0) \ |
|
{ \ |
|
if(e>=0 && e<=f) return 1; \ |
|
} \ |
|
else \ |
|
{ \ |
|
if(e<=0 && e>=f) return 1; \ |
|
} \ |
|
} |
|
|
|
#define EDGE_AGAINST_TRI_EDGES(V0,V1,U0,U1,U2) \ |
|
{ \ |
|
T Ax,Ay,Bx,By,Cx,Cy,e,d,f; \ |
|
Ax=V1[i0]-V0[i0]; \ |
|
Ay=V1[i1]-V0[i1]; \ |
|
/* test edge U0,U1 against V0,V1 */ \ |
|
EDGE_EDGE_TEST(V0,U0,U1); \ |
|
/* test edge U1,U2 against V0,V1 */ \ |
|
EDGE_EDGE_TEST(V0,U1,U2); \ |
|
/* test edge U2,U1 against V0,V1 */ \ |
|
EDGE_EDGE_TEST(V0,U2,U0); \ |
|
} |
|
|
|
#define POINT_IN_TRI(V0,U0,U1,U2) \ |
|
{ \ |
|
T a,b,c,d0,d1,d2; \ |
|
/* is T1 completly inside T2? */ \ |
|
/* check if V0 is inside tri(U0,U1,U2) */ \ |
|
a=U1[i1]-U0[i1]; \ |
|
b=-(U1[i0]-U0[i0]); \ |
|
c=-a*U0[i0]-b*U0[i1]; \ |
|
d0=a*V0[i0]+b*V0[i1]+c; \ |
|
\ |
|
a=U2[i1]-U1[i1]; \ |
|
b=-(U2[i0]-U1[i0]); \ |
|
c=-a*U1[i0]-b*U1[i1]; \ |
|
d1=a*V0[i0]+b*V0[i1]+c; \ |
|
\ |
|
a=U0[i1]-U2[i1]; \ |
|
b=-(U0[i0]-U2[i0]); \ |
|
c=-a*U2[i0]-b*U2[i1]; \ |
|
d2=a*V0[i0]+b*V0[i1]+c; \ |
|
if(d0*d1>0.0) \ |
|
{ \ |
|
if(d0*d2>0.0) return 1; \ |
|
} \ |
|
} |
|
|
|
template<class T> |
|
/** CHeck two triangles for coplanarity |
|
@param N |
|
@param V0 A vertex of the first triangle |
|
@param V1 A vertex of the first triangle |
|
@param V2 A vertex of the first triangle |
|
@param U0 A vertex of the second triangle |
|
@param U1 A vertex of the second triangle |
|
@param U2 A vertex of the second triangle |
|
@return true se due triangoli sono cooplanari, false altrimenti |
|
|
|
*/ |
|
bool coplanar_tri_tri(const Point3<T> N, const Point3<T> V0, const Point3<T> V1,const Point3<T> V2, |
|
const Point3<T> U0, const Point3<T> U1,const Point3<T> U2) |
|
{ |
|
T A[3]; |
|
short i0,i1; |
|
/* first project onto an axis-aligned plane, that maximizes the area */ |
|
/* of the triangles, compute indices: i0,i1. */ |
|
A[0]=FABS(N[0]); |
|
A[1]=FABS(N[1]); |
|
A[2]=FABS(N[2]); |
|
if(A[0]>A[1]) |
|
{ |
|
if(A[0]>A[2]) |
|
{ |
|
i0=1; /* A[0] is greatest */ |
|
i1=2; |
|
} |
|
else |
|
{ |
|
i0=0; /* A[2] is greatest */ |
|
i1=1; |
|
} |
|
} |
|
else /* A[0]<=A[1] */ |
|
{ |
|
if(A[2]>A[1]) |
|
{ |
|
i0=0; /* A[2] is greatest */ |
|
i1=1; |
|
} |
|
else |
|
{ |
|
i0=0; /* A[1] is greatest */ |
|
i1=2; |
|
} |
|
} |
|
|
|
/* test all edges of triangle 1 against the edges of triangle 2 */ |
|
EDGE_AGAINST_TRI_EDGES(V0,V1,U0,U1,U2); |
|
EDGE_AGAINST_TRI_EDGES(V1,V2,U0,U1,U2); |
|
EDGE_AGAINST_TRI_EDGES(V2,V0,U0,U1,U2); |
|
|
|
/* finally, test if tri1 is totally contained in tri2 or vice versa */ |
|
POINT_IN_TRI(V0,U0,U1,U2); |
|
POINT_IN_TRI(U0,V0,V1,V2); |
|
|
|
return 0; |
|
} |
|
|
|
|
|
|
|
#define NEWCOMPUTE_INTERVALS(VV0,VV1,VV2,D0,D1,D2,D0D1,D0D2,A,B,C,X0,X1) \ |
|
{ \ |
|
if(D0D1>0.0f) \ |
|
{ \ |
|
/* here we know that D0D2<=0.0 */ \ |
|
/* that is D0, D1 are on the same side, D2 on the other or on the plane */ \ |
|
A=VV2; B=(VV0-VV2)*D2; C=(VV1-VV2)*D2; X0=D2-D0; X1=D2-D1; \ |
|
} \ |
|
else if(D0D2>0.0f)\ |
|
{ \ |
|
/* here we know that d0d1<=0.0 */ \ |
|
A=VV1; B=(VV0-VV1)*D1; C=(VV2-VV1)*D1; X0=D1-D0; X1=D1-D2; \ |
|
} \ |
|
else if(D1*D2>0.0f || D0!=0.0f) \ |
|
{ \ |
|
/* here we know that d0d1<=0.0 or that D0!=0.0 */ \ |
|
A=VV0; B=(VV1-VV0)*D0; C=(VV2-VV0)*D0; X0=D0-D1; X1=D0-D2; \ |
|
} \ |
|
else if(D1!=0.0f) \ |
|
{ \ |
|
A=VV1; B=(VV0-VV1)*D1; C=(VV2-VV1)*D1; X0=D1-D0; X1=D1-D2; \ |
|
} \ |
|
else if(D2!=0.0f) \ |
|
{ \ |
|
A=VV2; B=(VV0-VV2)*D2; C=(VV1-VV2)*D2; X0=D2-D0; X1=D2-D1; \ |
|
} \ |
|
else \ |
|
{ \ |
|
/* triangles are coplanar */ \ |
|
return coplanar_tri_tri(N1,V0,V1,V2,U0,U1,U2); \ |
|
} \ |
|
} |
|
|
|
|
|
template<class T> |
|
/* |
|
@param V0 A vertex of the first triangle |
|
@param V1 A vertex of the first triangle |
|
@param V2 A vertex of the first triangle |
|
@param U0 A vertex of the second triangle |
|
@param U1 A vertex of the second triangle |
|
@param U2 A vertex of the second triangle |
|
@return true if the two triangles interesect |
|
*/ |
|
bool NoDivTriTriIsect(const Point3<T> V0,const Point3<T> V1,const Point3<T> V2, |
|
const Point3<T> U0,const Point3<T> U1,const Point3<T> U2) |
|
{ |
|
Point3<T> E1,E2; |
|
Point3<T> N1,N2; |
|
T d1,d2; |
|
T du0,du1,du2,dv0,dv1,dv2; |
|
Point3<T> D; |
|
T isect1[2], isect2[2]; |
|
T du0du1,du0du2,dv0dv1,dv0dv2; |
|
short index; |
|
T vp0,vp1,vp2; |
|
T up0,up1,up2; |
|
T bb,cc,max; |
|
|
|
/* compute plane equation of triangle(V0,V1,V2) */ |
|
SUB(E1,V1,V0); |
|
SUB(E2,V2,V0); |
|
CROSS(N1,E1,E2); |
|
N1.Normalize(); // aggiunto rispetto al codice orig. |
|
d1=-DOT(N1,V0); |
|
/* plane equation 1: N1.X+d1=0 */ |
|
|
|
/* put U0,U1,U2 into plane equation 1 to compute signed distances to the plane*/ |
|
du0=DOT(N1,U0)+d1; |
|
du1=DOT(N1,U1)+d1; |
|
du2=DOT(N1,U2)+d1; |
|
|
|
/* coplanarity robustness check */ |
|
#ifdef USE_TRI_TRI_INT_EPSILON_TEST |
|
if(FABS(du0)<TRI_TRI_INT_EPSILON) du0=0.0; |
|
if(FABS(du1)<TRI_TRI_INT_EPSILON) du1=0.0; |
|
if(FABS(du2)<TRI_TRI_INT_EPSILON) du2=0.0; |
|
#endif |
|
du0du1=du0*du1; |
|
du0du2=du0*du2; |
|
|
|
if(du0du1>0.0f && du0du2>0.0f) /* same sign on all of them + not equal 0 ? */ |
|
return 0; /* no intersection occurs */ |
|
|
|
/* compute plane of triangle (U0,U1,U2) */ |
|
SUB(E1,U1,U0); |
|
SUB(E2,U2,U0); |
|
CROSS(N2,E1,E2); |
|
d2=-DOT(N2,U0); |
|
/* plane equation 2: N2.X+d2=0 */ |
|
|
|
/* put V0,V1,V2 into plane equation 2 */ |
|
dv0=DOT(N2,V0)+d2; |
|
dv1=DOT(N2,V1)+d2; |
|
dv2=DOT(N2,V2)+d2; |
|
|
|
#ifdef USE_TRI_TRI_INT_EPSILON_TEST |
|
if(FABS(dv0)<TRI_TRI_INT_EPSILON) dv0=0.0; |
|
if(FABS(dv1)<TRI_TRI_INT_EPSILON) dv1=0.0; |
|
if(FABS(dv2)<TRI_TRI_INT_EPSILON) dv2=0.0; |
|
#endif |
|
|
|
dv0dv1=dv0*dv1; |
|
dv0dv2=dv0*dv2; |
|
|
|
if(dv0dv1>0.0f && dv0dv2>0.0f) /* same sign on all of them + not equal 0 ? */ |
|
return 0; /* no intersection occurs */ |
|
|
|
/* compute direction of intersection line */ |
|
CROSS(D,N1,N2); |
|
|
|
/* compute and index to the largest component of D */ |
|
max=(T)FABS(D[0]); |
|
index=0; |
|
bb=(T)FABS(D[1]); |
|
cc=(T)FABS(D[2]); |
|
if(bb>max) max=bb,index=1; |
|
if(cc>max) max=cc,index=2; |
|
|
|
/* this is the simplified projection onto L*/ |
|
vp0=V0[index]; |
|
vp1=V1[index]; |
|
vp2=V2[index]; |
|
|
|
up0=U0[index]; |
|
up1=U1[index]; |
|
up2=U2[index]; |
|
|
|
/* compute interval for triangle 1 */ |
|
T a,b,c,x0,x1; |
|
NEWCOMPUTE_INTERVALS(vp0,vp1,vp2,dv0,dv1,dv2,dv0dv1,dv0dv2,a,b,c,x0,x1); |
|
|
|
/* compute interval for triangle 2 */ |
|
T d,e,f,y0,y1; |
|
NEWCOMPUTE_INTERVALS(up0,up1,up2,du0,du1,du2,du0du1,du0du2,d,e,f,y0,y1); |
|
|
|
T xx,yy,xxyy,tmp; |
|
xx=x0*x1; |
|
yy=y0*y1; |
|
xxyy=xx*yy; |
|
|
|
tmp=a*xxyy; |
|
isect1[0]=tmp+b*x1*yy; |
|
isect1[1]=tmp+c*x0*yy; |
|
|
|
tmp=d*xxyy; |
|
isect2[0]=tmp+e*xx*y1; |
|
isect2[1]=tmp+f*xx*y0; |
|
|
|
SORT(isect1[0],isect1[1]); |
|
SORT(isect2[0],isect2[1]); |
|
|
|
if(isect1[1]<isect2[0] || isect2[1]<isect1[0]) return 0; |
|
return 1; |
|
} |
|
|
|
|
|
|
|
#define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2]) |
|
#define ADD(dest,v1,v2) dest[0]=v1[0]+v2[0]; dest[1]=v1[1]+v2[1]; dest[2]=v1[2]+v2[2]; |
|
#define MULT(dest,v,factor) dest[0]=factor*v[0]; dest[1]=factor*v[1]; dest[2]=factor*v[2]; |
|
#define SET(dest,src) dest[0]=src[0]; dest[1]=src[1]; dest[2]=src[2]; |
|
/* sort so that a<=b */ |
|
#define SORT2(a,b,smallest) \ |
|
if(a>b) \ |
|
{ \ |
|
float c; \ |
|
c=a; \ |
|
a=b; \ |
|
b=c; \ |
|
smallest=1; \ |
|
} \ |
|
else smallest=0; |
|
|
|
template <class T> |
|
inline void isect2(Point3<T> VTX0,Point3<T> VTX1,Point3<T> VTX2,float VV0,float VV1,float VV2, |
|
float D0,float D1,float D2,float *isect0,float *isect1,Point3<T> &isectpoint0,Point3<T> &isectpoint1) |
|
{ |
|
float tmp=D0/(D0-D1); |
|
float diff[3]; |
|
*isect0=VV0+(VV1-VV0)*tmp; |
|
SUB(diff,VTX1,VTX0); |
|
MULT(diff,diff,tmp); |
|
ADD(isectpoint0,diff,VTX0); |
|
tmp=D0/(D0-D2); |
|
*isect1=VV0+(VV2-VV0)*tmp; |
|
SUB(diff,VTX2,VTX0); |
|
MULT(diff,diff,tmp); |
|
ADD(isectpoint1,VTX0,diff); |
|
} |
|
|
|
template <class T> |
|
inline int compute_intervals_isectline(Point3<T> VERT0,Point3<T> VERT1,Point3<T> VERT2, |
|
float VV0,float VV1,float VV2,float D0,float D1,float D2, |
|
float D0D1,float D0D2,float *isect0,float *isect1, |
|
Point3<T> & isectpoint0, Point3<T> & isectpoint1) |
|
{ |
|
if(D0D1>0.0f) |
|
{ |
|
/* here we know that D0D2<=0.0 */ |
|
/* that is D0, D1 are on the same side, D2 on the other or on the plane */ |
|
isect2(VERT2,VERT0,VERT1,VV2,VV0,VV1,D2,D0,D1,isect0,isect1,isectpoint0,isectpoint1); |
|
} |
|
else if(D0D2>0.0f) |
|
{ |
|
/* here we know that d0d1<=0.0 */ |
|
isect2(VERT1,VERT0,VERT2,VV1,VV0,VV2,D1,D0,D2,isect0,isect1,isectpoint0,isectpoint1); |
|
} |
|
else if(D1*D2>0.0f || D0!=0.0f) |
|
{ |
|
/* here we know that d0d1<=0.0 or that D0!=0.0 */ |
|
isect2(VERT0,VERT1,VERT2,VV0,VV1,VV2,D0,D1,D2,isect0,isect1,isectpoint0,isectpoint1); |
|
} |
|
else if(D1!=0.0f) |
|
{ |
|
isect2(VERT1,VERT0,VERT2,VV1,VV0,VV2,D1,D0,D2,isect0,isect1,isectpoint0,isectpoint1); |
|
} |
|
else if(D2!=0.0f) |
|
{ |
|
isect2(VERT2,VERT0,VERT1,VV2,VV0,VV1,D2,D0,D1,isect0,isect1,isectpoint0,isectpoint1); |
|
} |
|
else |
|
{ |
|
/* triangles are coplanar */ |
|
return 1; |
|
} |
|
return 0; |
|
} |
|
|
|
#define COMPUTE_INTERVALS_ISECTLINE(VERT0,VERT1,VERT2,VV0,VV1,VV2,D0,D1,D2,D0D1,D0D2,isect0,isect1,isectpoint0,isectpoint1) \ |
|
if(D0D1>0.0f) \ |
|
{ \ |
|
/* here we know that D0D2<=0.0 */ \ |
|
/* that is D0, D1 are on the same side, D2 on the other or on the plane */ \ |
|
isect2(VERT2,VERT0,VERT1,VV2,VV0,VV1,D2,D0,D1,&isect0,&isect1,isectpoint0,isectpoint1); \ |
|
} |
|
#if 0 |
|
else if(D0D2>0.0f) \ |
|
{ \ |
|
/* here we know that d0d1<=0.0 */ \ |
|
isect2(VERT1,VERT0,VERT2,VV1,VV0,VV2,D1,D0,D2,&isect0,&isect1,isectpoint0,isectpoint1); \ |
|
} \ |
|
else if(D1*D2>0.0f || D0!=0.0f) \ |
|
{ \ |
|
/* here we know that d0d1<=0.0 or that D0!=0.0 */ \ |
|
isect2(VERT0,VERT1,VERT2,VV0,VV1,VV2,D0,D1,D2,&isect0,&isect1,isectpoint0,isectpoint1); \ |
|
} \ |
|
else if(D1!=0.0f) \ |
|
{ \ |
|
isect2(VERT1,VERT0,VERT2,VV1,VV0,VV2,D1,D0,D2,&isect0,&isect1,isectpoint0,isectpoint1); \ |
|
} \ |
|
else if(D2!=0.0f) \ |
|
{ \ |
|
isect2(VERT2,VERT0,VERT1,VV2,VV0,VV1,D2,D0,D1,&isect0,&isect1,isectpoint0,isectpoint1); \ |
|
} \ |
|
else \ |
|
{ \ |
|
/* triangles are coplanar */ \ |
|
coplanar=1; \ |
|
return coplanar_tri_tri(N1,V0,V1,V2,U0,U1,U2); \ |
|
} |
|
#endif |
|
|
|
template <class T> |
|
bool tri_tri_intersect_with_isectline( Point3<T> V0,Point3<T> V1,Point3<T> V2, |
|
Point3<T> U0,Point3<T> U1,Point3<T> U2,bool &coplanar, |
|
Point3<T> &isectpt1,Point3<T> &isectpt2) |
|
{ |
|
Point3<T> E1,E2; |
|
Point3<T> N1,N2; |
|
T d1,d2; |
|
float du0,du1,du2,dv0,dv1,dv2; |
|
Point3<T> D; |
|
float isect1[2], isect2[2]; |
|
Point3<T> isectpointA1,isectpointA2; |
|
Point3<T> isectpointB1,isectpointB2; |
|
float du0du1,du0du2,dv0dv1,dv0dv2; |
|
short index; |
|
float vp0,vp1,vp2; |
|
float up0,up1,up2; |
|
float b,c,max; |
|
|
|
Point3<T> diff; |
|
int smallest1,smallest2; |
|
|
|
/* compute plane equation of triangle(V0,V1,V2) */ |
|
SUB(E1,V1,V0); |
|
SUB(E2,V2,V0); |
|
CROSS(N1,E1,E2); |
|
d1=-DOT(N1,V0); |
|
/* plane equation 1: N1.X+d1=0 */ |
|
|
|
/* put U0,U1,U2 into plane equation 1 to compute signed distances to the plane*/ |
|
du0=DOT(N1,U0)+d1; |
|
du1=DOT(N1,U1)+d1; |
|
du2=DOT(N1,U2)+d1; |
|
|
|
/* coplanarity robustness check */ |
|
#ifdef USE_EPSILON_TEST |
|
if(fabs(du0)<TRI_TRI_INT_EPSILON) du0=0.0; |
|
if(fabs(du1)<TRI_TRI_INT_EPSILON) du1=0.0; |
|
if(fabs(du2)<TRI_TRI_INT_EPSILON) du2=0.0; |
|
#endif |
|
du0du1=du0*du1; |
|
du0du2=du0*du2; |
|
|
|
if(du0du1>0.0f && du0du2>0.0f) /* same sign on all of them + not equal 0 ? */ |
|
return 0; /* no intersection occurs */ |
|
|
|
/* compute plane of triangle (U0,U1,U2) */ |
|
SUB(E1,U1,U0); |
|
SUB(E2,U2,U0); |
|
CROSS(N2,E1,E2); |
|
d2=-DOT(N2,U0); |
|
/* plane equation 2: N2.X+d2=0 */ |
|
|
|
/* put V0,V1,V2 into plane equation 2 */ |
|
dv0=DOT(N2,V0)+d2; |
|
dv1=DOT(N2,V1)+d2; |
|
dv2=DOT(N2,V2)+d2; |
|
|
|
#ifdef USE_EPSILON_TEST |
|
if(fabs(dv0)<TRI_TRI_INT_EPSILON) dv0=0.0; |
|
if(fabs(dv1)<TRI_TRI_INT_EPSILON) dv1=0.0; |
|
if(fabs(dv2)<TRI_TRI_INT_EPSILON) dv2=0.0; |
|
#endif |
|
|
|
dv0dv1=dv0*dv1; |
|
dv0dv2=dv0*dv2; |
|
|
|
if(dv0dv1>0.0f && dv0dv2>0.0f) /* same sign on all of them + not equal 0 ? */ |
|
return 0; /* no intersection occurs */ |
|
|
|
/* compute direction of intersection line */ |
|
CROSS(D,N1,N2); |
|
|
|
/* compute and index to the largest component of D */ |
|
max=fabs(D[0]); |
|
index=0; |
|
b=fabs(D[1]); |
|
c=fabs(D[2]); |
|
if(b>max) max=b,index=1; |
|
if(c>max) max=c,index=2; |
|
|
|
/* this is the simplified projection onto L*/ |
|
vp0=V0[index]; |
|
vp1=V1[index]; |
|
vp2=V2[index]; |
|
|
|
up0=U0[index]; |
|
up1=U1[index]; |
|
up2=U2[index]; |
|
|
|
/* compute interval for triangle 1 */ |
|
coplanar=compute_intervals_isectline(V0,V1,V2,vp0,vp1,vp2,dv0,dv1,dv2, |
|
dv0dv1,dv0dv2,&isect1[0],&isect1[1],isectpointA1,isectpointA2); |
|
if(coplanar) return coplanar_tri_tri(N1,V0,V1,V2,U0,U1,U2); |
|
|
|
|
|
/* compute interval for triangle 2 */ |
|
compute_intervals_isectline(U0,U1,U2,up0,up1,up2,du0,du1,du2, |
|
du0du1,du0du2,&isect2[0],&isect2[1],isectpointB1,isectpointB2); |
|
|
|
SORT2(isect1[0],isect1[1],smallest1); |
|
SORT2(isect2[0],isect2[1],smallest2); |
|
|
|
if(isect1[1]<isect2[0] || isect2[1]<isect1[0]) return 0; |
|
|
|
/* at this point, we know that the triangles intersect */ |
|
|
|
if(isect2[0]<isect1[0]) |
|
{ |
|
if(smallest1==0) { SET(isectpt1,isectpointA1); } |
|
else { SET(isectpt1,isectpointA2); } |
|
|
|
if(isect2[1]<isect1[1]) |
|
{ |
|
if(smallest2==0) { SET(isectpt2,isectpointB2); } |
|
else { SET(isectpt2,isectpointB1); } |
|
} |
|
else |
|
{ |
|
if(smallest1==0) { SET(isectpt2,isectpointA2); } |
|
else { SET(isectpt2,isectpointA1); } |
|
} |
|
} |
|
else |
|
{ |
|
if(smallest2==0) { SET(isectpt1,isectpointB1); } |
|
else { SET(isectpt1,isectpointB2); } |
|
|
|
if(isect2[1]>isect1[1]) |
|
{ |
|
if(smallest1==0) { SET(isectpt2,isectpointA2); } |
|
else { SET(isectpt2,isectpointA1); } |
|
} |
|
else |
|
{ |
|
if(smallest2==0) { SET(isectpt2,isectpointB2); } |
|
else { SET(isectpt2,isectpointB1); } |
|
} |
|
} |
|
return 1; |
|
} |
|
|
|
|
|
} // end namespace |
|
|
|
#undef FABS |
|
#undef USE_EPSILON_TEST |
|
#undef TRI_TRI_INT_EPSILON |
|
#undef CROSS |
|
#undef DOT |
|
#undef SUB |
|
#undef SORT |
|
#undef SORT2 |
|
#undef ADD |
|
#undef MULT |
|
#undef SET |
|
#undef EDGE_EDGE_TEST |
|
#undef EDGE_AGAINST_TRI_EDGE |
|
#undef POINT_IN_TRI |
|
#undef COMPUTE_INTERVALS_ISECTLINE |
|
#undef NEWCOMPUTE_INTERVALS |
|
#endif
|
|
|