You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1204 lines
48 KiB
1204 lines
48 KiB
import time |
|
import open3d as o3d |
|
import os |
|
import numpy as np |
|
from scipy.spatial.transform import Rotation |
|
import sys |
|
sys.path.append("/home/algo/Documents/mask_face_occlusion/") |
|
from colmap_loader import read_cameras_text, read_images_text, read_int_text, write_int_text, read_indices_from_file |
|
from get_pose_matrix import get_w2c |
|
import argparse |
|
import matplotlib.pyplot as plt |
|
import collections |
|
import torch |
|
import torch.nn.functional as F |
|
from torch.utils.dlpack import to_dlpack, from_dlpack |
|
|
|
class ModelProcessor: |
|
def __init__(self): |
|
|
|
# argv = sys.argv[sys.argv.index("--") + 1:] if "--" in sys.argv else [] |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--id", |
|
required=True, |
|
) |
|
|
|
#""" |
|
parser.add_argument( |
|
"--base_path", |
|
type=str, |
|
required=True, |
|
) |
|
|
|
parser.add_argument( |
|
"--mesh_path", |
|
type=str, |
|
required=True, |
|
) |
|
|
|
parser.add_argument( |
|
"--sparse_dir", |
|
type=str, |
|
required=True, |
|
) |
|
#""" |
|
|
|
# print("ModelProcessor Init", args.input_file, self.pose_path) |
|
args = parser.parse_args() |
|
|
|
self.id = args.id |
|
|
|
# self.asset_dir = f"/home/algo/Documents/openMVS/data/{self.id}" |
|
self.asset_dir = args.base_path |
|
self.mesh_path = args.mesh_path |
|
# self.pose_path = f"{self.asset_dir}/sparse/" |
|
self.pose_path = args.sparse_dir |
|
if not os.path.exists(self.pose_path): |
|
raise FileNotFoundError(f"Camera data not found: {self.pose_path}") |
|
|
|
# GPU设备设置 |
|
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
print(f"Using device: {self.device}") |
|
|
|
self.mesh = None |
|
|
|
def load_model(self): |
|
"""加载并初始化3D模型""" |
|
# model_path = f"{self.asset_dir}/repair.ply" |
|
model_path = self.mesh_path |
|
if not os.path.exists(model_path): |
|
raise FileNotFoundError(f"Model file not found: {model_path}") |
|
|
|
print(model_path) |
|
|
|
mesh_native = o3d.io.read_triangle_mesh(model_path, enable_post_processing=False) |
|
# self.mesh = o3d.io.read_triangle_mesh(model_path, enable_post_processing=False) |
|
self.mesh = mesh_native |
|
|
|
#""" |
|
print("Open3D去重前顶点数:", len(mesh_native.vertices)) |
|
# self.mesh = mesh_native.merge_close_vertices(eps=1e-6) |
|
|
|
vertices2 = np.asarray(self.mesh.vertices) |
|
print("Open3D去重后顶点数:", len(vertices2)) |
|
vertices2_sorted = sorted( |
|
vertices2.tolist(), |
|
key=lambda x: (x[0], x[1], x[2]) |
|
) |
|
|
|
if not self.mesh.has_vertex_colors(): |
|
num_vertices = len(self.mesh.vertices) |
|
self.mesh.vertex_colors = o3d.utility.Vector3dVector( |
|
np.ones((num_vertices, 3)) |
|
) |
|
|
|
self.uv_array = np.asarray(self.mesh.triangle_uvs) |
|
# print(f"UV 坐标形状:{self.uv_array.shape}, {self.uv_array[0][1]}") |
|
#""" |
|
#""" |
|
# 将数据转移到GPU |
|
vertices = np.asarray(self.mesh.vertices, dtype=np.float32) |
|
triangles = np.asarray(self.mesh.triangles, dtype=np.int32) |
|
|
|
# 转换为PyTorch张量并转移到GPU |
|
self.vertices_tensor = torch.from_numpy(vertices).to(self.device) |
|
self.triangles_tensor = torch.from_numpy(triangles).to(self.device) |
|
|
|
print(f"Loaded {len(vertices)} vertices and {len(triangles)} triangles and {len(self.triangles_tensor)} triangles_tensor") |
|
|
|
self._build_face_adjacency_gpu() |
|
#""" |
|
# self._build_face_adjacency() |
|
|
|
if not self.mesh.has_vertex_colors(): |
|
num_vertices = len(self.mesh.vertices) |
|
self.mesh.vertex_colors = o3d.utility.Vector3dVector( |
|
np.ones((num_vertices, 3)) |
|
) |
|
|
|
def _build_face_adjacency_gpu(self): |
|
"""优化的GPU版本面片邻接关系构建""" |
|
if len(self.triangles_tensor) == 0: |
|
return |
|
|
|
triangles = self.triangles_tensor.cpu().numpy() # 转到CPU处理 |
|
num_faces = len(triangles) |
|
|
|
# 使用更高效的方法构建边-面映射 |
|
edge_face_map = {} |
|
|
|
for face_idx, tri in enumerate(triangles): |
|
# 获取三条边(排序顶点保证唯一性) |
|
edges = [ |
|
tuple(sorted([tri[0], tri[1]])), |
|
tuple(sorted([tri[1], tri[2]])), |
|
tuple(sorted([tri[2], tri[0]])) |
|
] |
|
|
|
for edge in edges: |
|
if edge not in edge_face_map: |
|
edge_face_map[edge] = [] |
|
edge_face_map[edge].append(face_idx) |
|
|
|
# 构建邻接关系 |
|
self.face_adjacency = [[] for _ in range(num_faces)] |
|
|
|
adjacency_count = 0 |
|
for edge, faces in edge_face_map.items(): |
|
if len(faces) > 1: # 只处理共享边 |
|
for i in faces: |
|
for j in faces: |
|
if i != j: |
|
if j not in self.face_adjacency[i]: |
|
self.face_adjacency[i].append(j) |
|
adjacency_count += 1 |
|
|
|
print(f"邻接关系构建完成:") |
|
print(f"- 面片总数: {num_faces}") |
|
print(f"- 边总数: {len(edge_face_map)}") |
|
print(f"- 共享边数: {len([f for f in edge_face_map.values() if len(f) > 1])}") |
|
print(f"- 邻接关系数: {adjacency_count}") |
|
|
|
def _build_depth_pyramid_gpu(self, depth_map, levels=4): |
|
"""GPU版本的深度金字塔构建""" |
|
if not isinstance(depth_map, torch.Tensor): |
|
depth_tensor = torch.from_numpy(depth_map).float().to(self.device) |
|
else: |
|
depth_tensor = depth_map.float() |
|
|
|
pyramid = [depth_tensor] |
|
current_level = depth_tensor |
|
|
|
for _ in range(levels-1): |
|
# 使用平均池化进行下采样 |
|
current_level = current_level.unsqueeze(0).unsqueeze(0) # 添加batch和channel维度 |
|
current_level = F.avg_pool2d(current_level, kernel_size=2, stride=2) |
|
current_level = current_level.squeeze(0).squeeze(0) |
|
pyramid.append(current_level) |
|
|
|
return pyramid |
|
|
|
def _hierarchical_occlusion_test_gpu(self, vertices_cam, depth_pyramid, intrinsics, img_size): |
|
"""GPU版本的层级遮挡检测 - 直接计算方法""" |
|
fx, fy, cx, cy = intrinsics |
|
height, width = img_size |
|
|
|
# 过滤无效顶点 |
|
valid_mask = vertices_cam[:, 2] > 1e-6 |
|
vertices_valid = vertices_cam[valid_mask] |
|
|
|
if len(vertices_valid) == 0: |
|
return (torch.zeros(len(vertices_cam), dtype=torch.bool, device=self.device), |
|
torch.zeros(len(vertices_cam), dtype=torch.bool, device=self.device)) |
|
|
|
visible = torch.zeros(len(vertices_valid), dtype=torch.bool, device=self.device) |
|
occlusion = torch.zeros(len(vertices_valid), dtype=torch.bool, device=self.device) |
|
|
|
# 批量处理所有层级 |
|
for level in reversed(range(len(depth_pyramid))): |
|
scale = 2 ** level |
|
current_depth = depth_pyramid[level] |
|
h, w = current_depth.shape |
|
|
|
# 直接计算投影坐标,避免矩阵乘法 |
|
x = vertices_valid[:, 0] |
|
y = vertices_valid[:, 1] |
|
z = vertices_valid[:, 2] |
|
|
|
# 缩放的内参 |
|
fx_scaled = max(fx/(scale + 1e-6), 1e-6) |
|
fy_scaled = max(fy/(scale + 1e-6), 1e-6) |
|
cx_scaled = (cx - 0.5)/scale + 0.5 |
|
cy_scaled = (cy - 0.5)/scale + 0.5 |
|
|
|
# 投影计算 |
|
u = (x / z) * fx_scaled + cx_scaled |
|
v = (y / z) * fy_scaled + cy_scaled |
|
|
|
# 边界处理 |
|
u = torch.clamp(u, 0.0, float(w-1)) |
|
v = torch.clamp(v, 0.0, float(h-1)) |
|
|
|
# 转换为整数索引 |
|
u_idx = torch.clamp(torch.floor(u).long(), 0, w-1) |
|
v_idx = torch.clamp(torch.floor(v).long(), 0, h-1) |
|
|
|
# 批量采样深度值 |
|
depth_vals = current_depth[v_idx, u_idx] |
|
|
|
# 批量深度比较 |
|
level_tol = 0.0008 * (2 ** level) |
|
visible |= (z <= (depth_vals + level_tol)) |
|
occlusion |= (z > (depth_vals + level_tol)) |
|
|
|
# 映射回原始顶点数量 |
|
final_visible = torch.zeros(len(vertices_cam), dtype=torch.bool, device=self.device) |
|
final_visible[valid_mask] = visible |
|
|
|
final_occlusion = torch.zeros(len(vertices_cam), dtype=torch.bool, device=self.device) |
|
final_occlusion[valid_mask] = occlusion |
|
|
|
return final_visible, final_occlusion |
|
|
|
def _compute_vertex_in_frustum_gpu(self, fx, fy, cx, cy, R, eye, height, width, depth_map, qvec, tvec): |
|
"""GPU版本的视锥体计算和遮挡检测""" |
|
print(f"开始 _compute_vertex_in_frustum_gpu") |
|
|
|
# 直接使用get_w2c,避免重复计算 |
|
w2c = get_w2c(qvec, tvec) |
|
|
|
# 确保w2c是4x4矩阵 |
|
if w2c.shape != (4, 4): |
|
if w2c.shape == (3, 4): |
|
w2c_4x4 = np.eye(4) |
|
w2c_4x4[:3, :] = w2c |
|
w2c = w2c_4x4 |
|
else: |
|
raise ValueError(f"w2c matrix has unexpected shape: {w2c.shape}") |
|
|
|
# 使用GPU张量 |
|
vertices = self.vertices_tensor.float() |
|
ones = torch.ones(len(vertices), 1, device=self.device) |
|
vertices_homo = torch.cat([vertices, ones], dim=1) |
|
|
|
w2c_tensor = torch.tensor(w2c, device=self.device, dtype=torch.float32) |
|
# 简化矩阵乘法 |
|
vertices_cam_homo = (w2c_tensor @ vertices_homo.T).T |
|
vertices_cam = vertices_cam_homo[:, :3] |
|
|
|
# 视锥体快速剔除 |
|
valid_z = vertices_cam[:, 2] > 0 |
|
tan_fov_x = (width / 2) / fx |
|
tan_fov_y = (height / 2) / fy |
|
x_ratio = vertices_cam[:, 0] / vertices_cam[:, 2] |
|
y_ratio = vertices_cam[:, 1] / vertices_cam[:, 2] |
|
frustum_mask = valid_z & (torch.abs(x_ratio) <= tan_fov_x) & (torch.abs(y_ratio) <= tan_fov_y) |
|
|
|
# 构建深度金字塔 |
|
depth_pyramid = self._build_depth_pyramid_gpu(depth_map) |
|
|
|
# 多级遮挡检测 |
|
visible_mask, occlusion_mask = self._hierarchical_occlusion_test_gpu( |
|
vertices_cam, depth_pyramid, (fx, fy, cx, cy), (height, width) |
|
) |
|
|
|
final_visible = torch.zeros(len(vertices), dtype=torch.bool, device=self.device) |
|
final_visible[frustum_mask] = visible_mask[frustum_mask] |
|
|
|
final_occlusion = torch.zeros(len(vertices), dtype=torch.bool, device=self.device) |
|
final_occlusion[frustum_mask] = occlusion_mask[frustum_mask] |
|
|
|
# 转换为numpy数组返回 |
|
# return (final_visible.cpu().numpy().tolist(), |
|
# self._occlusion_expansion_gpu(final_occlusion, vertices.cpu().numpy())) |
|
# 转换为numpy数组返回 |
|
return (final_visible.cpu().numpy().tolist()) |
|
|
|
def _occlusion_expansion_gpu(self, occlusion_mask, vertices, radius=0.0008): |
|
"""GPU版本的空间哈希遮挡扩展""" |
|
if not isinstance(occlusion_mask, torch.Tensor): |
|
occlusion_tensor = torch.from_numpy(occlusion_mask).to(self.device) |
|
vertices_tensor = torch.from_numpy(vertices).to(self.device) |
|
else: |
|
occlusion_tensor = occlusion_mask |
|
vertices_tensor = torch.from_numpy(vertices).to(self.device) |
|
|
|
# 构建空间哈希 |
|
grid_size = radius * 2 |
|
quantized = (vertices_tensor / grid_size).long() |
|
|
|
# 使用CUDA加速的哈希表 |
|
from collections import defaultdict |
|
hash_table = defaultdict(list) |
|
|
|
# 将数据移回CPU进行哈希构建(这部分在GPU上实现较复杂) |
|
quantized_cpu = quantized.cpu().numpy() |
|
for idx, (x, y, z) in enumerate(quantized_cpu): |
|
hash_table[(x, y, z)].append(idx) |
|
|
|
# 扩展遮挡区域 |
|
dilated_mask = occlusion_tensor.cpu().numpy().copy() |
|
occluded_indices = np.where(occlusion_tensor.cpu().numpy())[0] |
|
|
|
for idx in occluded_indices: |
|
x, y, z = quantized_cpu[idx] |
|
for dx in (-1, 0, 1): |
|
for dy in (-1, 0, 1): |
|
for dz in (-1, 0, 1): |
|
neighbor_cell = (x+dx, y+dy, z+dz) |
|
for neighbor_idx in hash_table.get(neighbor_cell, []): |
|
dilated_mask[neighbor_idx] = True |
|
|
|
return dilated_mask.tolist() |
|
|
|
def _gen_depth_image_gpu(self, cam_data, render): |
|
"""生成深度图(保持原样,因为Open3D渲染器可能不支持GPU)""" |
|
# Open3D的渲染器目前主要在CPU上工作 |
|
return self._gen_depth_image(cam_data, render) |
|
|
|
def _flag_model_gpu(self, camera_data, face_points=None): |
|
|
|
# 确保使用正确的深度图生成方式 |
|
render = o3d.visualization.rendering.OffscreenRenderer( |
|
camera_data['width'], camera_data['height']) |
|
|
|
material = o3d.visualization.rendering.MaterialRecord() |
|
render.scene.add_geometry("mesh", self.mesh, material) |
|
|
|
# 生成深度图 - 确保与CPU版本一致 |
|
depth_image = self._gen_depth_image_gpu(camera_data, render) |
|
|
|
# 使用与CPU版本相同的参数计算 |
|
R = self.qvec2rotmat(camera_data['qvec']).T |
|
eye = -R @ camera_data['tvec'] |
|
|
|
# final_visible_list, final_occlusion_list = self._compute_vertex_in_frustum_gpu( |
|
final_visible_list = self._compute_vertex_in_frustum_gpu( |
|
camera_data['fx'], camera_data['fy'], |
|
camera_data['cx'], camera_data['cy'], |
|
R, eye, |
|
camera_data['height'], camera_data['width'], |
|
depth_image, camera_data['qvec'], camera_data['tvec'] |
|
) |
|
|
|
# 确保使用正确的张量设备 |
|
final_visible_tensor = torch.tensor(final_visible_list, device=self.device) |
|
triangles_tensor = self.triangles_tensor # 直接使用已加载的GPU张量 |
|
|
|
# 向量化计算面片可见性 |
|
v0_indices = triangles_tensor[:, 0] |
|
v1_indices = triangles_tensor[:, 1] |
|
v2_indices = triangles_tensor[:, 2] |
|
|
|
v0_visible = final_visible_tensor[v0_indices] |
|
v1_visible = final_visible_tensor[v1_indices] |
|
v2_visible = final_visible_tensor[v2_indices] |
|
|
|
face_visible = v0_visible | v1_visible | v2_visible |
|
|
|
# 使用与CPU版本相同的后续处理 |
|
shrunk_visibility = self._shrink_face_visibility(face_visible.cpu().numpy(), 6) |
|
expanded_visibility = self._expand_face_visibility(face_visible.cpu().numpy(), 30) |
|
shrunk_visibility2 = self._shrink_face_visibility(face_visible.cpu().numpy(), 50) |
|
expanded_edge = expanded_visibility & ~shrunk_visibility2 |
|
delete_edge = face_visible.cpu().numpy() & ~shrunk_visibility |
|
|
|
return shrunk_visibility, expanded_edge, delete_edge |
|
|
|
""" |
|
def _gen_depth_image_gpu(self, cam_data, render): |
|
# 复制CPU版本的逻辑 |
|
qvec = cam_data['qvec'] |
|
tvec = cam_data['tvec'] |
|
fx = cam_data['fx'] |
|
fy = cam_data['fy'] |
|
cx = cam_data['cx'] |
|
cy = cam_data['cy'] |
|
width = cam_data['width'] |
|
height = cam_data['height'] |
|
|
|
intrinsics = o3d.camera.PinholeCameraIntrinsic( |
|
width, height, fx=fx, fy=fy, cx=cx, cy=cy) |
|
w2c = get_w2c(qvec, tvec) |
|
|
|
render.setup_camera(intrinsics, w2c) |
|
depth = render.render_to_depth_image(z_in_view_space=True) |
|
return np.asarray(depth) # 确保返回numpy数组 |
|
""" |
|
|
|
def _mask_occlusion_gpu(self): |
|
"""GPU版本的多相机遮挡检测""" |
|
cameras = read_cameras_text(os.path.join(self.pose_path, "cameras.txt")) |
|
images = read_images_text(os.path.join(self.pose_path, "images.txt")) |
|
|
|
visible_faces_dict = {} |
|
edge_faces_dict = {} |
|
delete_edge_faces_dict = {} |
|
|
|
total_start = time.time() |
|
|
|
for n, img in enumerate(images.values()): |
|
camera = cameras[img.camera_id] |
|
camera_data = { |
|
"qvec": img.qvec, |
|
"tvec": img.tvec, |
|
"fx": camera.params[0], |
|
"fy": camera.params[1], |
|
"cx": camera.params[2], |
|
"cy": camera.params[3], |
|
"width": camera.width, |
|
"height": camera.height, |
|
"name": img.name[:-4] |
|
} |
|
|
|
img_name = img.name[:-4] |
|
print(f"处理图像 {img_name} ({n+1}/{len(images)})") |
|
# if (img_name!="73_8" and img_name!="52_8" and img_name!="62_8"): |
|
# if (img_name!="52_8" and img_name!="62_8"): |
|
# if (img_name!="52_8"): |
|
# continue |
|
|
|
start_time = time.time() |
|
face_visibility, face_edge, face_delete_edge = self._flag_model_gpu(camera_data) |
|
processing_time = time.time() - start_time |
|
|
|
visible_faces = np.where(face_visibility)[0].tolist() |
|
visible_faces_dict[img_name] = visible_faces |
|
edge_faces_dict[img_name] = np.where(face_edge)[0].tolist() |
|
delete_edge_faces_dict[img_name] = np.where(face_delete_edge)[0].tolist() |
|
|
|
print(f"图像 {img_name} 处理完成,耗时: {processing_time:.2f}秒,可见面数量{len(visible_faces)}") |
|
|
|
total_time = time.time() - total_start |
|
print(f"所有图像处理完成,总耗时: {total_time:.2f}秒") |
|
print(f"平均每张图像耗时: {total_time/len(images):.2f}秒") |
|
|
|
return { |
|
"result1": visible_faces_dict, |
|
"result2": edge_faces_dict, |
|
"result3": delete_edge_faces_dict |
|
} |
|
|
|
#""" |
|
def _build_face_adjacency(self): |
|
if not self.mesh.triangles: |
|
return |
|
|
|
triangles = np.asarray(self.mesh.triangles) |
|
num_faces = len(triangles) |
|
self.face_adjacency = [[] for _ in range(num_faces)] |
|
|
|
# 创建边到面片的映射 |
|
edge_face_map = {} |
|
for idx, tri in enumerate(triangles): |
|
# 获取三条边(排序顶点保证唯一性) |
|
edges = [ |
|
tuple(sorted([tri[0], tri[1]])), |
|
tuple(sorted([tri[1], tri[2]])), |
|
tuple(sorted([tri[2], tri[0]])) |
|
] |
|
for edge in edges: |
|
if edge not in edge_face_map: |
|
edge_face_map[edge] = [] |
|
edge_face_map[edge].append(idx) |
|
|
|
# 通过共享边建立邻接关系 |
|
for edge, faces in edge_face_map.items(): |
|
if len(faces) > 1: # 只处理共享边 |
|
for i in faces: |
|
for j in faces: |
|
if i != j and j not in self.face_adjacency[i]: |
|
self.face_adjacency[i].append(j) |
|
|
|
def _expand_face_visibility(self, face_visibility, shrink_radius = 1): |
|
if self.face_adjacency is None: |
|
return face_visibility.copy() |
|
|
|
# 使用队列实现广度优先搜索的多层扩展 |
|
expanded = face_visibility.copy() |
|
visited = set() |
|
queue = collections.deque() |
|
|
|
# 初始添加所有可见面片 |
|
for face_idx, is_visible in enumerate(face_visibility): |
|
if is_visible: |
|
queue.append((face_idx, 0)) # (面片索引, 当前扩展层数) |
|
visited.add(face_idx) |
|
|
|
self.expand_radius = shrink_radius |
|
# 广度优先扩展 |
|
while queue: |
|
current_idx, current_radius = queue.popleft() |
|
|
|
# 如果当前扩展层数小于目标半径,继续扩展 |
|
if current_radius < self.expand_radius: |
|
for neighbor_idx in self.face_adjacency[current_idx]: |
|
# 仅处理未访问过的面片 |
|
if neighbor_idx not in visited: |
|
expanded[neighbor_idx] = True |
|
visited.add(neighbor_idx) |
|
# 将邻居加入队列,扩展层数+1 |
|
queue.append((neighbor_idx, current_radius + 1)) |
|
|
|
return expanded |
|
|
|
def _shrink_face_visibility(self, face_visibility, shrink_radius=1): |
|
if self.face_adjacency is None or shrink_radius == 0: |
|
return face_visibility.copy() |
|
|
|
# 创建当前可见性副本 |
|
current_visible = face_visibility.copy() |
|
|
|
# 创建边界队列 |
|
boundary_queue = collections.deque() |
|
|
|
# 初始化:找出所有边界面片(可见但至少有一个邻居不可见) |
|
for idx, is_visible in enumerate(current_visible): |
|
if not is_visible: |
|
continue |
|
for neighbor_idx in self.face_adjacency[idx]: |
|
if not current_visible[neighbor_idx]: |
|
boundary_queue.append((idx, 1)) # (面片索引, 当前圈数) |
|
break |
|
|
|
# 分层剥离 |
|
removed = set() |
|
while boundary_queue: |
|
idx, current_radius = boundary_queue.popleft() |
|
|
|
# 如果当前面片已被移除,跳过 |
|
if idx in removed: |
|
continue |
|
|
|
# 如果当前圈数已达到目标圈数,标记为移除 |
|
if current_radius <= shrink_radius: |
|
current_visible[idx] = False |
|
removed.add(idx) |
|
|
|
# 检查邻居:如果邻居是可见的,且尚未被标记为边界 |
|
for neighbor_idx in self.face_adjacency[idx]: |
|
if current_visible[neighbor_idx] and neighbor_idx not in removed: |
|
# 如果邻居现在成为边界(因为当前面片被移除) |
|
is_boundary = False |
|
for n_neighbor_idx in self.face_adjacency[neighbor_idx]: |
|
if not current_visible[n_neighbor_idx]: |
|
is_boundary = True |
|
break |
|
|
|
if is_boundary: |
|
boundary_queue.append((neighbor_idx, current_radius + 1)) |
|
|
|
return current_visible |
|
|
|
#""" |
|
|
|
@staticmethod |
|
def qvec2rotmat(qvec): |
|
"""四元数转旋转矩阵""" |
|
return Rotation.from_quat([qvec[1], qvec[2], qvec[3], qvec[0]]).as_matrix() |
|
|
|
def _compute_vertex_in_frustum(self, fx, fy, cx, cy, R, eye, height, width, depth_map, qvec, tvec): |
|
"""基于深度金字塔的层级式遮挡检测""" |
|
# 坐标转换 |
|
R = self.qvec2rotmat(qvec) |
|
w2c = get_w2c(qvec, tvec) |
|
vertices = np.asarray(self.mesh.vertices, dtype=np.float32) |
|
vertices_homo = np.hstack([vertices, np.ones((len(vertices), 1))]) |
|
vertices_cam = (w2c @ vertices_homo.T).T[:, :3] |
|
|
|
# 视锥体快速剔除 |
|
valid_z = vertices_cam[:, 2] > 0 |
|
tan_fov_x = (width / 2) / fx |
|
tan_fov_y = (height / 2) / fy |
|
x_ratio = vertices_cam[:, 0] / vertices_cam[:, 2] |
|
y_ratio = vertices_cam[:, 1] / vertices_cam[:, 2] |
|
frustum_mask = valid_z & (np.abs(x_ratio) <= tan_fov_x) & (np.abs(y_ratio) <= tan_fov_y) |
|
|
|
# 构建深度金字塔 |
|
depth_pyramid = self._build_depth_pyramid(depth_map) |
|
|
|
# 多级遮挡检测 |
|
visible_mask, occlusion_mask = self._hierarchical_occlusion_test( |
|
# visible_mask, occlusion_mask, vertex_depth_difference = self._hierarchical_occlusion_test2( |
|
vertices_cam[frustum_mask], |
|
depth_pyramid, |
|
(fx, fy, cx, cy), |
|
(height, width) |
|
) |
|
|
|
final_visible= np.zeros(len(vertices), dtype=bool) |
|
final_visible[frustum_mask] = visible_mask |
|
|
|
final_occlusion = np.zeros(len(vertices), dtype=bool) |
|
final_occlusion[frustum_mask] = occlusion_mask |
|
|
|
# final_vertex_difference = np.zeros(len(vertices), dtype=bool) |
|
# final_vertex_difference[frustum_mask] = vertex_depth_difference |
|
|
|
# return final_visible.tolist(), self._occlusion_expansion(final_occlusion, vertices), final_vertex_difference.tolist() |
|
return final_visible.tolist(), self._occlusion_expansion(final_occlusion, vertices) |
|
|
|
def _build_depth_pyramid2(self, depth_map, levels=4): |
|
"""构建深度图金字塔""" |
|
pyramid = [depth_map.copy()] |
|
current_level = depth_map |
|
for _ in range(levels-1): |
|
current_level = 0.25 * (current_level[::2, ::2] + |
|
current_level[1::2, ::2] + |
|
current_level[::2, 1::2] + |
|
current_level[1::2, 1::2]) |
|
pyramid.append(current_level) |
|
return pyramid |
|
|
|
def _build_depth_pyramid(self, depth_map, levels=4): |
|
pyramid = [depth_map.copy()] |
|
current_level = depth_map |
|
|
|
for _ in range(levels-1): |
|
h, w = current_level.shape |
|
# 确保尺寸可被2整除 |
|
if h % 2 != 0 or w % 2 != 0: |
|
current_level = current_level[:h//2 * 2, :w//2 * 2] # 裁剪到最近偶尺寸 |
|
|
|
# 添加广播兼容性检查 |
|
if current_level[::2, ::2].shape != current_level[1::2, ::2].shape: |
|
current_level = current_level[:h//2 * 2, :w//2 * 2] |
|
|
|
current_level = 0.25 * ( |
|
current_level[::2, ::2] + |
|
current_level[1::2, ::2] + |
|
current_level[::2, 1::2] + |
|
current_level[1::2, 1::2] |
|
) |
|
pyramid.append(current_level) |
|
return pyramid |
|
|
|
def _hierarchical_occlusion_test(self, vertices_cam, depth_pyramid, intrinsics, img_size): |
|
"""层级式遮挡检测(安全版本)""" |
|
fx, fy, cx, cy = intrinsics |
|
height, width = img_size |
|
|
|
# 1. 过滤无效顶点 |
|
valid_mask = vertices_cam[:, 2] > 1e-6 |
|
vertices_valid = vertices_cam[valid_mask] |
|
if len(vertices_valid) == 0: |
|
return (np.zeros(len(vertices_cam), dtype=bool), |
|
np.zeros(len(vertices_cam), dtype=bool)) |
|
|
|
visible = np.zeros(len(vertices_valid), dtype=bool) |
|
occlusion = np.zeros(len(vertices_valid), dtype=bool) |
|
|
|
# 2. 层级检测 |
|
for level in reversed(range(len(depth_pyramid))): |
|
scale = 2 ** level |
|
current_depth = depth_pyramid[level] |
|
h, w = current_depth.shape |
|
|
|
# 安全构造内参矩阵 |
|
K = np.array([ |
|
[max(fx/(scale + 1e-6), 1e-6), 0, (cx - 0.5)/scale + 0.5], |
|
[0, max(fy/(scale + 1e-6), 1e-6), (cy - 0.5)/scale + 0.5], |
|
[0, 0, 1] |
|
], dtype=np.float32) |
|
|
|
# 投影计算 |
|
uv_homo = (K @ vertices_valid.T).T |
|
uv = uv_homo[:, :2] / uv_homo[:, 2:3] |
|
|
|
# 安全边界处理 |
|
u = np.clip(uv[:, 0], 0.0, float(w-1)) |
|
v = np.clip(uv[:, 1], 0.0, float(h-1)) |
|
|
|
# 转换为整数索引 |
|
u_idx = np.clip(np.floor(u).astype(np.int32), 0, w-1) |
|
v_idx = np.clip(np.floor(v).astype(np.int32), 0, h-1) |
|
|
|
# 采样深度值 |
|
depth_vals = current_depth[v_idx, u_idx] |
|
|
|
# 深度比较 |
|
level_tol = 0.0008 * (2 ** level) # 0.005 0.0008 |
|
visible |= (vertices_valid[:, 2] <= (depth_vals + level_tol)) |
|
occlusion |= (vertices_valid[:, 2] > (depth_vals + level_tol)) |
|
|
|
# 3. 结果映射 |
|
final_visible = np.zeros(len(vertices_cam), dtype=bool) |
|
final_visible[valid_mask] = visible |
|
|
|
final_occlusion = np.zeros(len(vertices_cam), dtype=bool) |
|
final_occlusion[valid_mask] = occlusion |
|
|
|
return final_visible, final_occlusion |
|
|
|
def _hierarchical_occlusion_test2(self, vertices_cam, depth_pyramid, intrinsics, img_size): |
|
"""层级式遮挡检测(安全版本)""" |
|
fx, fy, cx, cy = intrinsics |
|
height, width = img_size |
|
|
|
# 1. 过滤无效顶点 |
|
valid_mask = vertices_cam[:, 2] > 1e-6 |
|
vertices_valid = vertices_cam[valid_mask] |
|
if len(vertices_valid) == 0: |
|
return (np.zeros(len(vertices_cam), dtype=bool), |
|
np.zeros(len(vertices_cam), dtype=bool), |
|
np.zeros(len(vertices_cam))) # 返回空的深度差值数组 |
|
|
|
visible = np.zeros(len(vertices_valid), dtype=bool) |
|
occlusion = np.zeros(len(vertices_valid), dtype=bool) |
|
|
|
# 用于存储每个像素点的深度范围(最小值和最大值) |
|
pixel_depth_min = {} |
|
pixel_depth_max = {} |
|
|
|
# 2. 层级检测 |
|
for level in reversed(range(len(depth_pyramid))): |
|
scale = 2 ** level |
|
current_depth = depth_pyramid[level] |
|
h, w = current_depth.shape |
|
|
|
# 安全构造内参矩阵 |
|
K = np.array([ |
|
[max(fx/(scale + 1e-6), 1e-6), 0, (cx - 0.5)/scale + 0.5], |
|
[0, max(fy/(scale + 1e-6), 1e-6), (cy - 0.5)/scale + 0.5], |
|
[0, 0, 1] |
|
], dtype=np.float32) |
|
|
|
# 投影计算 |
|
uv_homo = (K @ vertices_valid.T).T |
|
uv = uv_homo[:, :2] / uv_homo[:, 2:3] |
|
|
|
# 安全边界处理 |
|
u = np.clip(uv[:, 0], 0.0, float(w-1)) |
|
v = np.clip(uv[:, 1], 0.0, float(h-1)) |
|
|
|
# 转换为整数索引 |
|
u_idx = np.clip(np.floor(u).astype(np.int32), 0, w-1) |
|
v_idx = np.clip(np.floor(v).astype(np.int32), 0, h-1) |
|
|
|
# 采样深度值 |
|
depth_vals = current_depth[v_idx, u_idx] |
|
|
|
# 只在最高分辨率层级(level=0)记录像素深度范围 |
|
if level == 0: |
|
for i in range(len(u_idx)): |
|
pixel_key = (u_idx[i], v_idx[i]) |
|
vertex_depth = vertices_valid[i, 2] |
|
|
|
# 更新像素的最小深度值 |
|
if pixel_key not in pixel_depth_min or vertex_depth < pixel_depth_min[pixel_key]: |
|
pixel_depth_min[pixel_key] = vertex_depth |
|
|
|
# 更新像素的最大深度值 |
|
if pixel_key not in pixel_depth_max or vertex_depth > pixel_depth_max[pixel_key]: |
|
pixel_depth_max[pixel_key] = vertex_depth |
|
|
|
# 深度比较 |
|
level_tol = 0.0008 * (2 ** level) # 0.005 0.0008 |
|
visible |= (vertices_valid[:, 2] <= (depth_vals + level_tol)) |
|
occlusion |= (vertices_valid[:, 2] > (depth_vals + level_tol)) |
|
|
|
# 计算每个像素的深度差值(最大深度 - 最小深度) |
|
pixel_depth_difference = {} |
|
for pixel_key in pixel_depth_min: |
|
if pixel_key in pixel_depth_max: |
|
pixel_depth_difference[pixel_key] = pixel_depth_max[pixel_key] - pixel_depth_min[pixel_key] |
|
|
|
# 为每个顶点分配对应的像素点深度差值 |
|
vertex_depth_difference = np.zeros(len(vertices_cam)) |
|
if level == 0: # 确保我们记录了深度范围 |
|
for i in range(len(vertices_valid)): |
|
pixel_key = (u_idx[i], v_idx[i]) |
|
if pixel_key in pixel_depth_difference: |
|
# 找到原始顶点索引 |
|
orig_idx = np.where(valid_mask)[0][i] |
|
vertex_depth_difference[orig_idx] = pixel_depth_difference[pixel_key] |
|
|
|
# 3. 结果映射 |
|
final_visible = np.zeros(len(vertices_cam), dtype=bool) |
|
final_visible[valid_mask] = visible |
|
|
|
final_occlusion = np.zeros(len(vertices_cam), dtype=bool) |
|
final_occlusion[valid_mask] = occlusion |
|
|
|
return final_visible, final_occlusion, vertex_depth_difference |
|
|
|
def _hierarchical_occlusion_test3(self, vertices_cam, depth_pyramid, intrinsics, img_size): |
|
"""层级式遮挡检测(安全版本)""" |
|
fx, fy, cx, cy = intrinsics |
|
height, width = img_size |
|
|
|
# 1. 过滤无效顶点 |
|
valid_mask = vertices_cam[:, 2] > 1e-6 |
|
vertices_valid = vertices_cam[valid_mask] |
|
if len(vertices_valid) == 0: |
|
return (np.zeros(len(vertices_cam), dtype=bool), |
|
np.zeros(len(vertices_cam), dtype=bool), |
|
{}) # 返回空的深度差值字典 |
|
|
|
visible = np.zeros(len(vertices_valid), dtype=bool) |
|
occlusion = np.zeros(len(vertices_valid), dtype=bool) |
|
|
|
# 用于存储每个像素点的深度范围 |
|
pixel_depth_range = {} |
|
|
|
# 用于存储每个顶点对应的像素坐标和深度差值 |
|
vertex_pixel_info = {} |
|
|
|
# 2. 层级检测 |
|
for level in reversed(range(len(depth_pyramid))): |
|
scale = 2 ** level |
|
current_depth = depth_pyramid[level] |
|
h, w = current_depth.shape |
|
|
|
# 安全构造内参矩阵 |
|
K = np.array([ |
|
[max(fx/(scale + 1e-6), 1e-6), 0, (cx - 0.5)/scale + 0.5], |
|
[0, max(fy/(scale + 1e-6), 1e-6), (cy - 0.5)/scale + 0.5], |
|
[0, 0, 1] |
|
], dtype=np.float32) |
|
|
|
# 投影计算 |
|
uv_homo = (K @ vertices_valid.T).T |
|
uv = uv_homo[:, :2] / uv_homo[:, 2:3] |
|
|
|
# 安全边界处理 |
|
u = np.clip(uv[:, 0], 0.0, float(w-1)) |
|
v = np.clip(uv[:, 1], 0.0, float(h-1)) |
|
|
|
# 转换为整数索引 |
|
u_idx = np.clip(np.floor(u).astype(np.int32), 0, w-1) |
|
v_idx = np.clip(np.floor(v).astype(np.int32), 0, h-1) |
|
|
|
# 采样深度值 |
|
depth_vals = current_depth[v_idx, u_idx] |
|
|
|
# 记录每个像素点的深度范围(只在最高分辨率层级记录) |
|
# if level == 0: # 只在原始分辨率层级记录 |
|
if True: |
|
for i in range(len(u_idx)): |
|
vertex_idx = np.where(valid_mask)[0][i] # 获取原始顶点索引 |
|
pixel_key = (u_idx[i], v_idx[i]) |
|
|
|
# 记录顶点对应的像素坐标 |
|
vertex_pixel_info[vertex_idx] = pixel_key |
|
|
|
# 记录像素点的深度范围 |
|
if pixel_key not in pixel_depth_range: |
|
pixel_depth_range[pixel_key] = { |
|
'min': vertices_valid[i, 2], # 顶点深度 |
|
'max': vertices_valid[i, 2], # 顶点深度 |
|
'count': 1 |
|
} |
|
else: |
|
pixel_depth_range[pixel_key]['min'] = min( |
|
pixel_depth_range[pixel_key]['min'], vertices_valid[i, 2]) |
|
pixel_depth_range[pixel_key]['max'] = max( |
|
pixel_depth_range[pixel_key]['max'], vertices_valid[i, 2]) |
|
pixel_depth_range[pixel_key]['count'] += 1 |
|
|
|
# 深度比较 |
|
level_tol = 0.0008 * (2 ** level) # 0.005 0.0008 |
|
visible |= (vertices_valid[:, 2] <= (depth_vals + level_tol)) |
|
occlusion |= (vertices_valid[:, 2] > (depth_vals + level_tol)) |
|
|
|
# 计算每个像素点的深度差值 |
|
pixel_depth_difference = {} |
|
for pixel_key, depth_range in pixel_depth_range.items(): |
|
pixel_depth_difference[pixel_key] = depth_range['max'] - depth_range['min'] |
|
|
|
# 为每个顶点分配对应的像素点深度差值 |
|
vertex_depth_difference = np.zeros(len(vertices_cam)) |
|
for vertex_idx, pixel_key in vertex_pixel_info.items(): |
|
if pixel_key in pixel_depth_difference: |
|
vertex_depth_difference[vertex_idx] = pixel_depth_difference[pixel_key] |
|
|
|
# 3. 结果映射 |
|
final_visible = np.zeros(len(vertices_cam), dtype=bool) |
|
final_visible[valid_mask] = visible |
|
|
|
final_occlusion = np.zeros(len(vertices_cam), dtype=bool) |
|
final_occlusion[valid_mask] = occlusion |
|
|
|
return final_visible, final_occlusion, vertex_depth_difference |
|
|
|
def _occlusion_expansion(self, occlusion_mask, vertices, radius=0.0008): |
|
"""基于空间哈希的快速遮挡扩展""" |
|
from collections import defaultdict |
|
|
|
# 构建空间哈希 |
|
grid_size = radius * 2 |
|
hash_table = defaultdict(list) |
|
|
|
# 量化顶点坐标 |
|
quantized = (vertices / grid_size).astype(int) |
|
for idx, (x, y, z) in enumerate(quantized): |
|
hash_table[(x, y, z)].append(idx) |
|
|
|
# 扩展遮挡区域 |
|
dilated_mask = occlusion_mask.copy() |
|
occluded_indices = np.where(occlusion_mask)[0] |
|
|
|
for idx in occluded_indices: |
|
x, y, z = quantized[idx] |
|
# 查询邻近27个网格 |
|
for dx in (-1, 0, 1): |
|
for dy in (-1, 0, 1): |
|
for dz in (-1, 0, 1): |
|
neighbor_cell = (x+dx, y+dy, z+dz) |
|
dilated_mask[hash_table.get(neighbor_cell, [])] = True |
|
|
|
return dilated_mask.tolist() |
|
|
|
def _gen_depth_image(self, cam_data, render): |
|
"""生成深度图""" |
|
qvec = cam_data['qvec'] |
|
tvec = cam_data['tvec'] |
|
fx = cam_data['fx'] |
|
fy = cam_data['fy'] |
|
cx = cam_data['cx'] |
|
cy = cam_data['cy'] |
|
width = cam_data['width'] |
|
height = cam_data['height'] |
|
|
|
intrinsics = o3d.camera.PinholeCameraIntrinsic( |
|
width, height, fx=fx, fy=fy, cx=cx, cy=cy) |
|
w2c = get_w2c(qvec, tvec) |
|
# print(np.linalg.inv(w2c)) |
|
|
|
# 配置渲染器 |
|
render.setup_camera(intrinsics, w2c) |
|
depth = render.render_to_depth_image(z_in_view_space=True) |
|
return np.asarray(depth) |
|
|
|
def sort_vertices(vertices_original): |
|
return sorted( |
|
(v for v in vertices_original), |
|
key=lambda v: (v.co.x, v.co.y, v.co.z) |
|
) |
|
|
|
def _flag_model(self, camera_data, face_points): |
|
"""标记可见顶点""" |
|
vertex_visible = [] |
|
vertex_occlusion = [] |
|
depth_images = [] |
|
|
|
render = o3d.visualization.rendering.OffscreenRenderer(camera_data['width'], camera_data['height']) |
|
|
|
material = o3d.visualization.rendering.MaterialRecord() |
|
render.scene.add_geometry("mesh", self.mesh, material) |
|
|
|
# 生成深度图 |
|
depth_image = self._gen_depth_image(camera_data, render) |
|
|
|
# 计算可见性 |
|
R = self.qvec2rotmat(camera_data['qvec']).T |
|
eye = -R @ camera_data['tvec'] |
|
# eye = camera_data['tvec'] |
|
# final_visible_list, final_occlusion_list, final_vertex_difference_list = self._compute_vertex_in_frustum( |
|
final_visible_list, final_occlusion_list = self._compute_vertex_in_frustum( |
|
camera_data['fx'], camera_data['fy'], |
|
camera_data['cx'], camera_data['cy'], |
|
R, eye, |
|
camera_data['height'], camera_data['width'], |
|
depth_image,camera_data['qvec'], camera_data['tvec'] |
|
) |
|
print("_flag_model", len(final_occlusion_list), len(self.mesh.vertices), len(self.mesh.vertex_colors)) |
|
|
|
# 获取三角形面片数组 |
|
triangles = np.asarray(self.mesh.triangles) |
|
|
|
face_visible_bitmap = np.zeros(len(triangles), dtype=bool) |
|
|
|
# 遍历所有面片 |
|
for face_idx, face in enumerate(triangles): |
|
v0, v1, v2 = face |
|
|
|
face_visible_bitmap[face_idx] = any([ # any all |
|
final_visible_list[v0], |
|
final_visible_list[v1], |
|
final_visible_list[v2] |
|
]) |
|
|
|
shrunk_visibility = self._shrink_face_visibility(face_visible_bitmap, 6) # 6 10 |
|
|
|
expanded_visibility = self._expand_face_visibility(face_visible_bitmap, 30) |
|
shrunk_visibility2 = self._shrink_face_visibility(face_visible_bitmap, 50) |
|
expanded_edge = expanded_visibility & ~shrunk_visibility2 |
|
delete_edge = face_visible_bitmap & ~shrunk_visibility |
|
|
|
return shrunk_visibility, expanded_edge, delete_edge |
|
|
|
def _flag_contour(self, camera_data, face_points): |
|
"""标记可见顶点""" |
|
vertex_visible = [] |
|
vertex_occlusion = [] |
|
depth_images = [] |
|
|
|
render = o3d.visualization.rendering.OffscreenRenderer(camera_data['width'], camera_data['height']) |
|
|
|
material = o3d.visualization.rendering.MaterialRecord() |
|
render.scene.add_geometry("mesh", self.mesh, material) |
|
|
|
# 生成深度图 |
|
depth_image = self._gen_depth_image(camera_data, render) |
|
|
|
# 获取相机参数 |
|
fx = camera_data['fx'] |
|
fy = camera_data['fy'] |
|
cx = camera_data['cx'] |
|
cy = camera_data['cy'] |
|
height = camera_data['height'] |
|
width = camera_data['width'] |
|
|
|
# 计算顶点在相机空间中的坐标 |
|
w2c = get_w2c(camera_data['qvec'], camera_data['tvec']) |
|
vertices = np.asarray(self.mesh.vertices) |
|
vertices_homo = np.hstack([vertices, np.ones((len(vertices), 1))]) |
|
vertices_cam = (w2c @ vertices_homo.T).T[:, :3] |
|
|
|
# 过滤掉相机后面的顶点 |
|
valid_mask = vertices_cam[:, 2] > 0 |
|
vertices_valid = vertices_cam[valid_mask] |
|
|
|
# 投影顶点到图像平面 |
|
u = (vertices_valid[:, 0] * fx / vertices_valid[:, 2] + cx) |
|
v = (vertices_valid[:, 1] * fy / vertices_valid[:, 2] + cy) |
|
u_idx = np.clip(np.floor(u).astype(int), 0, width-1) |
|
v_idx = np.clip(np.floor(v).astype(int), 0, height-1) |
|
|
|
# 初始化 min_depth_map 和 max_depth_map |
|
min_depth_map = np.full((height, width), np.inf) |
|
max_depth_map = np.zeros((height, width)) |
|
|
|
# 更新 min_depth_map 和 max_depth_map |
|
for i in range(len(vertices_valid)): |
|
x = u_idx[i] |
|
y = v_idx[i] |
|
d = vertices_valid[i, 2] |
|
if d < min_depth_map[y, x]: |
|
min_depth_map[y, x] = d |
|
if d > max_depth_map[y, x]: |
|
max_depth_map[y, x] = d |
|
|
|
# 对于每个顶点,检查深度范围 |
|
edge_vertices = np.zeros(len(vertices), dtype=bool) |
|
threshold = 3 # 阈值,可根据需要调整 |
|
for i in range(len(vertices_valid)): |
|
x = u_idx[i] |
|
y = v_idx[i] |
|
if min_depth_map[y, x] < np.inf: # 确保有数据 |
|
depth_range = max_depth_map[y, x] - min_depth_map[y, x] |
|
if depth_range > threshold: |
|
# 找到原始顶点索引 |
|
orig_idx = np.where(valid_mask)[0][i] |
|
edge_vertices[orig_idx] = False |
|
|
|
# 标记边缘顶点 |
|
vertex_colors = np.asarray(self.mesh.vertex_colors) |
|
for i in range(len(vertices)): |
|
if edge_vertices[i]: |
|
vertex_colors[i] = [1.0, 0.0, 0.0] # 红色表示边缘 |
|
|
|
# 保存模型 |
|
output_path = f"{self.asset_dir}/mesh_{self.id}_edge.ply" |
|
o3d.io.write_triangle_mesh(output_path, self.mesh) |
|
print(f"Edge detection completed. Results saved to {output_path}") |
|
|
|
# 计算面片的边缘性 |
|
triangles = np.asarray(self.mesh.triangles) |
|
face_edge = np.zeros(len(triangles), dtype=bool) |
|
for face_idx, face in enumerate(triangles): |
|
if any(edge_vertices[face]): |
|
face_edge[face_idx] = True |
|
|
|
# 为了兼容原有代码,返回面片可见性和边缘性 |
|
# 注意:这里face_visible_bitmap未定义,但原有代码可能期望返回两个值 |
|
# 如果需要面片可见性,可以保留原有逻辑,但这里简化处理 |
|
face_visible_bitmap = np.ones(len(triangles), dtype=bool) # 临时填充 |
|
return face_visible_bitmap, face_edge |
|
|
|
""" |
|
def _mask_face_occlusion(self): |
|
# 读取相机数据 |
|
cameras = read_cameras_text(os.path.join(self.pose_path, "cameras.txt")) |
|
images = read_images_text(os.path.join(self.pose_path, "images.txt")) |
|
# cameras = read_cameras_text(os.path.join(self.pose_path, "backup_cameras.txt")) |
|
# images = read_images_text(os.path.join(self.pose_path, "backup_images.txt")) |
|
|
|
face_points_sorted_path = os.path.join(self.pose_path, "face_points_sorted.txt") |
|
print("face_points_sorted_path=", face_points_sorted_path) |
|
#face_points = read_int_text(face_points_sorted_path) |
|
face_points = read_indices_from_file(face_points_sorted_path) |
|
# face_points = {} |
|
camera_data = {} |
|
|
|
for img in images.values(): |
|
if self.mask_image == img.name[:-4]: |
|
camera = cameras[img.camera_id] |
|
camera_data = { |
|
"qvec": img.qvec, |
|
"tvec": img.tvec, |
|
"fx": camera.params[0], |
|
"fy": camera.params[1], |
|
"cx": camera.params[2], |
|
"cy": camera.params[3], |
|
"width": camera.width, |
|
"height": camera.height, |
|
"name": img.name[:-4] |
|
} |
|
|
|
# print(face_points) |
|
self._flag_model(camera_data, face_points) |
|
""" |
|
|
|
def _mask_occlusion(self): |
|
# 读取相机数据 |
|
cameras = read_cameras_text(os.path.join(self.pose_path, "cameras.txt")) |
|
images = read_images_text(os.path.join(self.pose_path, "images.txt")) |
|
|
|
camera_data = {} |
|
|
|
countour_faces_dict = {} |
|
visible_faces_dict = {} |
|
edge_faces_dict = {} |
|
delete_edge_faces_dict = {} |
|
|
|
total_start = time.time() |
|
|
|
n = 0 |
|
for img in images.values(): |
|
camera = cameras[img.camera_id] |
|
camera_data = { |
|
"qvec": img.qvec, |
|
"tvec": img.tvec, |
|
"fx": camera.params[0], |
|
"fy": camera.params[1], |
|
"cx": camera.params[2], |
|
"cy": camera.params[3], |
|
"width": camera.width, |
|
"height": camera.height, |
|
"name": img.name[:-4] |
|
} |
|
img_name = img.name[:-4] |
|
# if (img_name!="73_8" and img_name!="52_8" and img_name!="62_8"): |
|
# if (img_name!="52_8" and img_name!="62_8"): |
|
# if (img_name!="52_8"): |
|
# continue |
|
|
|
start_time = time.time() |
|
face_visibility, face_edge, face_delete_edge = self._flag_model(camera_data, None) |
|
processing_time = time.time() - start_time |
|
|
|
visible_faces = np.where(face_visibility)[0].tolist() |
|
visible_faces_dict[img.name[:-4]] = visible_faces |
|
edge_faces_dict[img.name[:-4]] = np.where(face_edge)[0].tolist() |
|
delete_edge_faces_dict[img.name[:-4]] = np.where(face_delete_edge)[0].tolist() |
|
n += 1 |
|
|
|
print(f"图像={img_name},耗时={processing_time:.2f}秒,可见面数={len(visible_faces)}") |
|
|
|
total_time = time.time() - total_start |
|
print(f"所有图像处理完成,总耗时: {total_time:.2f}秒") |
|
print(f"平均每张图像耗时: {total_time/len(images):.2f}秒") |
|
|
|
return {"result1": visible_faces_dict, "result2": edge_faces_dict, "result3": delete_edge_faces_dict} |
|
|
|
def process(self): |
|
|
|
print("process") |
|
|
|
self.load_model() |
|
|
|
try: |
|
# 处理物理相机生成遮挡判断 |
|
# return self._mask_occlusion() |
|
return self._mask_occlusion_gpu() |
|
|
|
except Exception as e: |
|
print(f"Error during processing: {str(e)}") |
|
raise |
|
|
|
if __name__ == "__main__": |
|
ModelProcessor().process()
|
|
|