You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
636 lines
21 KiB
636 lines
21 KiB
/**************************************************************************** |
|
* VCGLib o o * |
|
* Visual and Computer Graphics Library o o * |
|
* _ O _ * |
|
* Copyright(C) 2004-2016 \/)\/ * |
|
* Visual Computing Lab /\/| * |
|
* ISTI - Italian National Research Council | * |
|
* \ * |
|
* All rights reserved. * |
|
* * |
|
* This program is free software; you can redistribute it and/or modify * |
|
* it under the terms of the GNU General Public License as published by * |
|
* the Free Software Foundation; either version 2 of the License, or * |
|
* (at your option) any later version. * |
|
* * |
|
* This program is distributed in the hope that it will be useful, * |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of * |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * |
|
* for more details. * |
|
* * |
|
****************************************************************************/ |
|
#ifndef __VCGLIB_APPEND |
|
#define __VCGLIB_APPEND |
|
|
|
#include <vcg/complex/allocate.h> |
|
#include <vcg/complex/algorithms/update/selection.h> |
|
|
|
namespace vcg { |
|
namespace tri { |
|
/** \ingroup trimesh */ |
|
/*! \brief Class to safely duplicate and append (portion of) meshes. |
|
|
|
Adding elements to a mesh, like faces and vertices can involve the reallocation of the vectors of the involved elements. |
|
This class provide the only safe methods to add elements of a mesh to another one. |
|
\sa \ref allocation |
|
*/ |
|
template<class MeshLeft, class ConstMeshRight> |
|
class Append |
|
{ |
|
public: |
|
typedef typename MeshLeft::ScalarType ScalarLeft; |
|
typedef typename MeshLeft::CoordType CoordLeft; |
|
typedef typename MeshLeft::VertexType VertexLeft; |
|
typedef typename MeshLeft::EdgeType EdgeLeft; |
|
typedef typename MeshLeft::FaceType FaceLeft; |
|
typedef typename MeshLeft::HEdgeType HEdgeLeft; |
|
typedef typename MeshLeft::TetraType TetraLeft; |
|
typedef typename MeshLeft::VertexPointer VertexPointerLeft; |
|
typedef typename MeshLeft::VertexIterator VertexIteratorLeft; |
|
typedef typename MeshLeft::EdgeIterator EdgeIteratorLeft; |
|
typedef typename MeshLeft::HEdgeIterator HEdgeIteratorLeft; |
|
typedef typename MeshLeft::FaceIterator FaceIteratorLeft; |
|
typedef typename MeshLeft::TetraIterator TetraIteratorLeft; |
|
|
|
|
|
typedef typename ConstMeshRight::ScalarType ScalarRight; |
|
typedef typename ConstMeshRight::CoordType CoordRight; |
|
typedef typename ConstMeshRight::VertexType VertexRight; |
|
typedef typename ConstMeshRight::EdgeType EdgeRight; |
|
typedef typename ConstMeshRight::HEdgeType HEdgeRight; |
|
typedef typename ConstMeshRight::FaceType FaceRight; |
|
typedef typename ConstMeshRight::TetraType TetraRight; |
|
typedef typename ConstMeshRight::TetraPointer TetraPointerRight; |
|
typedef typename ConstMeshRight::TetraIterator TetraIteratorRight; |
|
typedef typename ConstMeshRight::VertexPointer VertexPointerRight; |
|
typedef typename ConstMeshRight::VertexIterator VertexIteratorRight; |
|
typedef typename ConstMeshRight::EdgeIterator EdgeIteratorRight; |
|
typedef typename ConstMeshRight::HEdgeIterator HEdgeIteratorRight; |
|
typedef typename ConstMeshRight::FaceIterator FaceIteratorRight; |
|
typedef typename ConstMeshRight::FacePointer FacePointerRight; |
|
|
|
struct Remap{ |
|
static size_t InvalidIndex() { return std::numeric_limits<size_t>::max(); } |
|
std::vector<size_t> vert, face, edge, hedge, tetra; |
|
}; |
|
|
|
static void ImportVertexAdj(MeshLeft &ml, const ConstMeshRight &mr, VertexLeft &vl, const VertexRight &vr, Remap &remap ){ |
|
// Vertex to Edge Adj |
|
if(HasVEAdjacency(ml) && HasVEAdjacency(mr) && vr.cVEp() != 0){ |
|
size_t i = Index(mr,vr.cVEp()); |
|
vl.VEp() = (i>ml.edge.size())? 0 : &ml.edge[remap.edge[i]]; |
|
vl.VEi() = vr.VEi(); |
|
} |
|
|
|
// Vertex to Face Adj |
|
if(HasPerVertexVFAdjacency(ml) && HasPerVertexVFAdjacency(mr) && vr.cVFp() != 0 ){ |
|
size_t i = Index(mr,vr.cVFp()); |
|
vl.VFp() = (i>ml.face.size())? 0 :&ml.face[remap.face[i]]; |
|
vl.VFi() = vr.VFi(); |
|
} |
|
|
|
// Vertex to HEdge Adj |
|
if(HasVHAdjacency(ml) && HasVHAdjacency(mr) && vr.cVHp() != 0){ |
|
vl.VHp() = &ml.hedge[remap.hedge[Index(mr,vr.cVHp())]]; |
|
vl.VHi() = vr.VHi(); |
|
} |
|
|
|
// Vertex to Tetra Adj |
|
if(HasVTAdjacency(ml) && HasVTAdjacency(mr) && vr.cVTp() != 0){ |
|
size_t i = Index(mr, vr.cVTp()); |
|
vl.VTp() = (i > ml.edge.size()) ? 0 : &ml.tetra[remap.tetra[i]]; |
|
vl.VTi() = vr.VTi(); |
|
} |
|
} |
|
|
|
static void ImportEdgeAdj(MeshLeft &ml, const ConstMeshRight &mr, EdgeLeft &el, const EdgeRight &er, Remap &remap) |
|
{ |
|
// Edge to Edge Adj |
|
if(HasEEAdjacency(ml) && HasEEAdjacency(mr)) |
|
for(unsigned int vi = 0; vi < 2; ++vi) |
|
{ |
|
size_t idx = Index(mr,er.cEEp(vi)); |
|
el.EEp(vi) = (idx>ml.edge.size())? 0 : &ml.edge[remap.edge[idx]]; |
|
el.EEi(vi) = er.cEEi(vi); |
|
} |
|
|
|
// Edge to Face Adj |
|
if(HasEFAdjacency(ml) && HasEFAdjacency(mr)){ |
|
size_t idx = Index(mr,er.cEFp()); |
|
el.EFp() = (idx>ml.face.size())? 0 :&ml.face[remap.face[idx]]; |
|
el.EFi() = er.cEFi(); |
|
} |
|
|
|
// Edge to HEdge Adj |
|
if(HasEHAdjacency(ml) && HasEHAdjacency(mr)) |
|
el.EHp() = &ml.hedge[remap.hedge[Index(mr,er.cEHp())]]; |
|
} |
|
|
|
|
|
static void ImportFaceAdj(MeshLeft &ml, const ConstMeshRight &mr, FaceLeft &fl, const FaceRight &fr, Remap &remap ) |
|
{ |
|
// Face to Edge Adj |
|
if(HasFEAdjacency(ml) && HasFEAdjacency(mr)){ |
|
assert(fl.VN() == fr.VN()); |
|
for( int vi = 0; vi < fl.VN(); ++vi ){ |
|
size_t idx = remap.edge[Index(mr,fr.cFEp(vi))]; |
|
if(idx!=Remap::InvalidIndex()) |
|
fl.FEp(vi) = &ml.edge[idx]; |
|
} |
|
} |
|
|
|
// Face to Face Adj |
|
if(HasFFAdjacency(ml) && HasFFAdjacency(mr)){ |
|
assert(fl.VN() == fr.VN()); |
|
for( int vi = 0; vi < fl.VN(); ++vi ){ |
|
size_t idx = remap.face[Index(mr,fr.cFFp(vi))]; |
|
if(idx!=Remap::InvalidIndex()){ |
|
assert(idx >= 0 && idx < ml.face.size()); |
|
fl.FFp(vi) = &ml.face[idx]; |
|
fl.FFi(vi) = fr.cFFi(vi); |
|
} |
|
} |
|
} |
|
|
|
// Vertex to Face Adj |
|
if(HasPerFaceVFAdjacency(ml) && HasPerFaceVFAdjacency(mr)) |
|
{ |
|
assert(fl.VN() == fr.VN()); |
|
for (int vi = 0; vi < fl.VN(); ++vi) |
|
{ |
|
const auto * fp = fr.cVFp(vi); |
|
const auto vfindex = fr.cVFi(vi); |
|
size_t fidx = (fp == nullptr) ? Remap::InvalidIndex() : remap.face[Index(mr,fp)]; |
|
|
|
if (fidx == Remap::InvalidIndex()) // end of VF chain (or not initialized) |
|
{ |
|
fl.VFClear(vi); |
|
assert(fl.cVFi(vi) == -1); |
|
} |
|
else |
|
{ |
|
assert(fidx >= 0 && fidx < ml.face.size()); |
|
fl.VFp(vi) = &ml.face[fidx]; |
|
fl.VFi(vi) = vfindex; |
|
} |
|
} |
|
} |
|
|
|
// Face to HEedge Adj |
|
if(HasFHAdjacency(ml) && HasFHAdjacency(mr)) |
|
fl.FHp() = &ml.hedge[remap.hedge[Index(mr,fr.cFHp())]]; |
|
} |
|
|
|
static void ImportHEdgeAdj(MeshLeft &ml, const ConstMeshRight &mr, HEdgeLeft &hl, const HEdgeRight &hr, Remap &remap, bool /*sel*/ ){ |
|
// HEdge to Vertex Adj |
|
if(HasHVAdjacency(ml) && HasHVAdjacency(mr)) |
|
hl.HVp() = &ml.vert[remap.vert[Index(mr,hr.cHVp())]]; |
|
|
|
// HEdge to Edge Adj |
|
if(HasHEAdjacency(ml) && HasHEAdjacency(mr)){ |
|
size_t idx = Index(mr,hr.cHEp()) ; |
|
hl.HEp() = (idx>ml.edge.size())? 0 : &ml.edge[remap.edge[idx]]; |
|
} |
|
|
|
// HEdge to Face Adj |
|
if(HasHFAdjacency(ml) && HasHFAdjacency(mr)){ |
|
size_t idx = Index(mr,hr.cHFp()); |
|
hl.HFp() = (idx>ml.face.size())? 0 :&ml.face[remap.face[idx]]; |
|
} |
|
|
|
|
|
// HEdge to Opposite HEdge Adj |
|
if(HasHOppAdjacency(ml) && HasHOppAdjacency(mr)) |
|
hl.HOp() = &ml.hedge[remap.hedge[Index(mr,hr.cHOp())]]; |
|
|
|
// HEdge to Next HEdge Adj |
|
if(HasHNextAdjacency(ml) && HasHNextAdjacency(mr)) |
|
hl.HNp() = &ml.hedge[remap.hedge[Index(mr,hr.cHNp())]]; |
|
|
|
// HEdge to Next HEdge Adj |
|
if(HasHPrevAdjacency(ml) && HasHPrevAdjacency(mr)) |
|
hl.HPp() = &ml.hedge[remap.hedge[Index(mr,hr.cHPp())]]; |
|
} |
|
|
|
static void ImportTetraAdj(MeshLeft &ml, const ConstMeshRight &mr, TetraLeft &tl, const TetraRight &tr, Remap &remap ) |
|
{ |
|
// Tetra to Tetra Adj |
|
if(HasTTAdjacency(ml) && HasTTAdjacency(mr)){ |
|
for( int vi = 0; vi < 4; ++vi ){ |
|
size_t idx = remap.tetra[Index(mr,tr.cTTp(vi))]; |
|
if(idx != Remap::InvalidIndex()){ |
|
tl.TTp(vi) = &ml.tetra[idx]; |
|
tl.TTi(vi) = tr.cTTi(vi); |
|
} |
|
} |
|
} |
|
} |
|
|
|
// Append Right Mesh to the Left Mesh |
|
// Append::Mesh(ml, mr) is equivalent to ml += mr. |
|
// Note MeshRigth could be costant... |
|
/*! \brief %Append the second mesh to the first one. |
|
|
|
The first mesh is not destroyed and no attempt of avoid duplication of already present elements is done. |
|
If requested only the selected elements are appended to the first one. |
|
The second mesh is not changed at all (it could be constant) with the exception of the selection (see below note). |
|
|
|
\note If the the selection of the vertexes is not consistent with the face selection |
|
the append could build faces referencing non existent vertices |
|
so it is mandatory that the selection of the vertices reflects the loose selection |
|
from edges and faces (e.g. if a face is selected then all its vertices must be selected). |
|
|
|
\note Attributes. This function will copy only those attributes that are present in both meshes. |
|
Two attributes in different meshes are considered the same iff they have the same |
|
name and the same type. This may be deceiving because they could in fact have |
|
different semantic, but this is up to the developer. |
|
If the left mesh has attributes that are not in the right mesh, their values for the elements |
|
of the right mesh will be uninitialized |
|
|
|
*/ |
|
|
|
static void Mesh(MeshLeft& ml, ConstMeshRight& mr, const bool selected = false, const bool adjFlag = false) |
|
{ |
|
// Note that if the the selection of the vertexes is not consistent with the face selection |
|
// the append could build faces referencing non existent vertices |
|
// so it is mandatory that the selection of the vertices reflects the loose selection |
|
// from edges and faces (e.g. if a face is selected all its vertices must be selected). |
|
// note the use of the parameter for preserving existing vertex selection. |
|
if(selected) |
|
{ |
|
assert(adjFlag == false || ml.IsEmpty()); // It is rather meaningless to partially copy adj relations. |
|
tri::UpdateSelection<ConstMeshRight>::VertexFromEdgeLoose(mr,true); |
|
tri::UpdateSelection<ConstMeshRight>::VertexFromFaceLoose(mr,true); |
|
} |
|
|
|
MeshAppendConst(ml, mr, selected, adjFlag); |
|
} |
|
|
|
/** |
|
* @brief MeshAppendConst |
|
* @param ml |
|
* @param mr |
|
* |
|
* This is function is similar with the Mesh function, but does not |
|
* never update selections. In some cases, after the append, |
|
* selection of vertices may be inconsistent with face selection, |
|
* as explained above. |
|
* To avoid this, before using this function, call the following functions: |
|
* |
|
* \code{.cpp} |
|
* vcg::tri::UpdateSelection<MyMesh>::VertexFromEdgeLoose(mr,true); |
|
* vcg::tri::UpdateSelection<MyMesh>::VertexFromFaceLoose(mr,true); |
|
* \endcode |
|
* |
|
* or, use the Mesh function that takes a non-const Right Mesh argument. |
|
*/ |
|
static void MeshAppendConst( |
|
MeshLeft& ml, |
|
const ConstMeshRight& mr, |
|
const bool selected = false, |
|
const bool adjFlag = false) |
|
{ |
|
// phase 1. allocate on ml vert,edge,face, hedge to accomodat those of mr |
|
// and build the remapping for all |
|
|
|
Remap remap; |
|
|
|
// vertex |
|
remap.vert.resize(mr.vert.size(), Remap::InvalidIndex()); |
|
VertexIteratorLeft vp; |
|
if(selected){ |
|
size_t svn = UpdateSelection<ConstMeshRight>::VertexCount(mr); |
|
vp=Allocator<MeshLeft>::AddVertices(ml,int(svn)); |
|
} |
|
else |
|
vp=Allocator<MeshLeft>::AddVertices(ml,mr.vn); |
|
|
|
ForEachVertex(mr, [&](const VertexRight& v) |
|
{ |
|
if(!selected || v.IsS()) |
|
{ |
|
size_t ind=Index(mr,v); |
|
remap.vert[ind]=int(Index(ml,*vp)); |
|
++vp; |
|
} |
|
}); |
|
// edge |
|
remap.edge.resize(mr.edge.size(), Remap::InvalidIndex()); |
|
EdgeIteratorLeft ep; |
|
if(selected) { |
|
size_t sen = UpdateSelection<ConstMeshRight>::EdgeCount(mr); |
|
ep=Allocator<MeshLeft>::AddEdges(ml,sen); |
|
} |
|
else ep=Allocator<MeshLeft>::AddEdges(ml,mr.en); |
|
|
|
ForEachEdge(mr, [&](const EdgeRight& e) |
|
{ |
|
if(!selected || e.IsS()){ |
|
size_t ind=Index(mr,e); |
|
remap.edge[ind]=int(Index(ml,*ep)); |
|
++ep; |
|
} |
|
}); |
|
|
|
// face |
|
remap.face.resize(mr.face.size(), Remap::InvalidIndex()); |
|
FaceIteratorLeft fp; |
|
if(selected) { |
|
size_t sfn = UpdateSelection<ConstMeshRight>::FaceCount(mr); |
|
fp=Allocator<MeshLeft>::AddFaces(ml,sfn); |
|
} |
|
else fp=Allocator<MeshLeft>::AddFaces(ml,mr.fn); |
|
|
|
ForEachFace(mr, [&](const FaceRight& f) |
|
{ |
|
if(!selected || f.IsS()){ |
|
size_t ind=Index(mr,f); |
|
remap.face[ind]=int(Index(ml,*fp)); |
|
++fp; |
|
} |
|
}); |
|
|
|
// hedge |
|
remap.hedge.resize(mr.hedge.size(),Remap::InvalidIndex()); |
|
|
|
ForEachHEdge(mr, [&](const HEdgeRight& he) |
|
{ |
|
if(!selected || he.IsS()){ |
|
size_t ind=Index(mr,he); |
|
assert(remap.hedge[ind]==Remap::InvalidIndex()); |
|
HEdgeIteratorLeft hp = Allocator<MeshLeft>::AddHEdges(ml,1); |
|
(*hp).ImportData(he); |
|
remap.hedge[ind]=Index(ml,*hp); |
|
} |
|
}); |
|
|
|
remap.tetra.resize(mr.tetra.size(), Remap::InvalidIndex()); |
|
|
|
ForEachTetra(mr, [&](const TetraRight& t) |
|
{ |
|
if (!selected || t.IsS()) { |
|
size_t idx = Index(mr, t); |
|
assert (remap.tetra[idx] == Remap::InvalidIndex()); |
|
TetraIteratorLeft tp = Allocator<MeshLeft>::AddTetras(ml, 1); |
|
(*tp).ImportData(t); |
|
remap.tetra[idx] = Index(ml, *tp); |
|
} |
|
}); |
|
|
|
// phase 1.5 |
|
// manage textures, creating a new one only when necessary |
|
// (not making unuseful duplicates on append) and save a mapping |
|
|
|
// for each texture in the right mesh, it maps it to the texture index in the |
|
// left mesh |
|
std::vector<unsigned int> mappingTextures(mr.textures.size()); |
|
|
|
unsigned int baseMlT = ml.textures.size(); |
|
for (unsigned int i = 0; i < mr.textures.size(); ++i) { |
|
auto it = std::find(ml.textures.begin(), ml.textures.end(), mr.textures[i]); |
|
//if the right texture does not exists in the left mesh |
|
if (it == ml.textures.end()) { |
|
//add the texture in the left mesh and create the mapping |
|
mappingTextures[i] = baseMlT++; |
|
ml.textures.push_back(mr.textures[i]); |
|
} |
|
else { |
|
//the ith right texture will map in the texture found in the left mesh |
|
mappingTextures[i] = it - ml.textures.begin(); |
|
} |
|
} |
|
//ml.textures.insert(ml.textures.end(), mr.textures.begin(),mr.textures.end()); |
|
|
|
// phase 2. |
|
// copy data from mr to its corresponding elements in ml and adjacencies |
|
|
|
//vtexcoords - can copy only if they are enabled both on l and r |
|
bool vertTexFlag = HasPerVertexTexCoord(ml) && HasPerVertexTexCoord(mr); |
|
|
|
// vertex |
|
ForEachVertex(mr, [&](const VertexRight& v) |
|
{ |
|
if(!selected || v.IsS()){ |
|
VertexLeft &vl = ml.vert[remap.vert[Index(mr,v)]]; |
|
vl.ImportData(v); |
|
if(adjFlag) |
|
ImportVertexAdj(ml,mr,vl,v,remap); |
|
if (vertTexFlag){ |
|
if (size_t(v.T().n()) < mappingTextures.size()) { |
|
//standard case: the texture is contained in the mesh |
|
vl.T().n() = mappingTextures[v.T().n()]; |
|
} |
|
else { |
|
//the mesh has tex coords, but not the texture... |
|
vl.T().n() = v.T().n(); |
|
} |
|
} |
|
} |
|
}); |
|
|
|
// edge |
|
ForEachEdge(mr, [&](const EdgeRight& e) |
|
{ |
|
if(!selected || e.IsS()){ |
|
ml.edge[remap.edge[Index(mr,e)]].ImportData(e); |
|
// Edge to Vertex Adj |
|
EdgeLeft &el = ml.edge[remap.edge[Index(mr,e)]]; |
|
if(HasEVAdjacency(ml) && HasEVAdjacency(mr)){ |
|
el.V(0) = &ml.vert[remap.vert[Index(mr,e.cV(0))]]; |
|
el.V(1) = &ml.vert[remap.vert[Index(mr,e.cV(1))]]; |
|
} |
|
if(adjFlag) ImportEdgeAdj(ml,mr,el,e,remap); |
|
} |
|
}); |
|
|
|
//ftexcoords - can copy only if they are enabled both on l and r |
|
bool wedgeTexFlag = HasPerWedgeTexCoord(ml) && HasPerWedgeTexCoord(mr); |
|
|
|
// face |
|
ForEachFace(mr, [&](const FaceRight& f) |
|
{ |
|
if(!selected || f.IsS()) |
|
{ |
|
FaceLeft &fl = ml.face[remap.face[Index(mr,f)]]; |
|
fl.Alloc(f.VN()); |
|
if(HasFVAdjacency(ml) && HasFVAdjacency(mr)){ |
|
for(int i = 0; i < fl.VN(); ++i) |
|
fl.V(i) = &ml.vert[remap.vert[Index(mr,f.cV(i))]]; |
|
} |
|
fl.ImportData(f); |
|
if(wedgeTexFlag) { |
|
for(int i = 0; i < 3; ++i){ |
|
if (size_t(f.WT(i).n()) < mappingTextures.size()){ |
|
//standard case: the texture is contained in the mesh |
|
fl.WT(i).n() = mappingTextures[f.WT(i).n()]; |
|
} |
|
else { |
|
//the mesh has tex coords, but not the texture... |
|
fl.WT(i).n() = f.WT(i).n(); |
|
} |
|
} |
|
} |
|
if(adjFlag) ImportFaceAdj(ml,mr,ml.face[remap.face[Index(mr,f)]],f,remap); |
|
|
|
} |
|
}); |
|
|
|
// hedge |
|
ForEachHEdge(mr, [&](const HEdgeRight& he) |
|
{ |
|
if(!selected || he.IsS()){ |
|
ml.hedge[remap.hedge[Index(mr,he)]].ImportData(he); |
|
ImportHEdgeAdj(ml,mr,ml.hedge[remap.hedge[Index(mr,he)]],he,remap,selected); |
|
} |
|
}); |
|
|
|
//tetra |
|
ForEachTetra(mr, [&](const TetraRight& t) |
|
{ |
|
if(!selected || t.IsS()) |
|
{ |
|
TetraLeft &tl = ml.tetra[remap.tetra[Index(mr,t)]]; |
|
|
|
if(HasFVAdjacency(ml) && HasFVAdjacency(mr)){ |
|
for(int i = 0; i < 4; ++i) |
|
tl.V(i) = &ml.vert[remap.vert[Index(mr,t.cV(i))]]; |
|
} |
|
tl.ImportData(t); |
|
if(adjFlag) ImportTetraAdj(ml, mr, ml.tetra[remap.tetra[Index(mr,t)]], t, remap); |
|
|
|
} |
|
}); |
|
|
|
// phase 3. |
|
// take care of other per mesh data: attributes |
|
|
|
// Attributes. Copy only those attributes that are present in both meshes |
|
// Two attributes in different meshes are considered the same if they have the same |
|
// name and the same type. This may be deceiving because they could in fact have |
|
// different semantic, but this is up to the developer. |
|
// If the left mesh has attributes that are not in the right mesh, their values for the elements |
|
// of the right mesh will be uninitialized |
|
|
|
unsigned int id_r; |
|
typename std::set< PointerToAttribute >::iterator al, ar; |
|
|
|
// per vertex attributes |
|
for (al = ml.vert_attr.begin(); al != ml.vert_attr.end(); ++al) |
|
if(!(*al)._name.empty()) |
|
{ |
|
ar = mr.vert_attr.find(*al); |
|
if (ar != mr.vert_attr.end()) |
|
{ |
|
id_r = 0; |
|
for (const auto & v : mr.vert) |
|
{ |
|
if( !v.IsD() && (!selected || v.IsS())) |
|
(*al)._handle->CopyValue(remap.vert[Index(mr,v)], id_r, (*ar)._handle); |
|
++id_r; |
|
} |
|
} |
|
} |
|
|
|
// per edge attributes |
|
for (al = ml.edge_attr.begin(); al != ml.edge_attr.end(); ++al) |
|
if (!(*al)._name.empty()) |
|
{ |
|
ar = mr.edge_attr.find(*al); |
|
if (ar!= mr.edge_attr.end()) |
|
{ |
|
id_r = 0; |
|
for (const auto & e : mr.edge) |
|
{ |
|
if( !e.IsD() && (!selected || e.IsS())) |
|
(*al)._handle->CopyValue(remap.edge[Index(mr,e)], id_r, (*ar)._handle); |
|
++id_r; |
|
} |
|
} |
|
} |
|
|
|
// per face attributes |
|
for (al = ml.face_attr.begin(); al != ml.face_attr.end(); ++al) |
|
if (!(*al)._name.empty()) |
|
{ |
|
ar = mr.face_attr.find(*al); |
|
if (ar!= mr.face_attr.end()) |
|
{ |
|
id_r = 0; |
|
for (const auto & f : mr.face) |
|
{ |
|
if( !f.IsD() && (!selected || f.IsS())) |
|
(*al)._handle->CopyValue(remap.face[Index(mr,f)], id_r, (*ar)._handle); |
|
++id_r; |
|
} |
|
} |
|
} |
|
|
|
// per tetra attributes |
|
for (al = ml.tetra_attr.begin(); al != ml.tetra_attr.end(); ++al) |
|
if (!(*al)._name.empty()) |
|
{ |
|
ar = mr.tetra_attr.find(*al); |
|
if (ar!= mr.tetra_attr.end()) |
|
{ |
|
id_r = 0; |
|
for (const auto & t: mr.tetra) |
|
{ |
|
if( !t.IsD() && (!selected || t.IsS())) |
|
(*al)._handle->CopyValue(remap.tetra[Index(mr, t)], id_r, (*ar)._handle); |
|
++id_r; |
|
} |
|
} |
|
} |
|
|
|
// per mesh attributes |
|
// if both ml and mr have an attribute with the same name, no action is done |
|
// if mr has an attribute that is NOT present in ml, the attribute is added to ml |
|
//for(ar = mr.mesh_attr.begin(); ar != mr.mesh_attr.end(); ++ar) |
|
// if(!(*ar)._name.empty()){ |
|
// al = ml.mesh_attr.find(*ar); |
|
// if(al== ml.mesh_attr.end()) |
|
// //... |
|
// } |
|
} |
|
|
|
/** |
|
* \brief Copy the second mesh over the first one. |
|
* The first mesh is destroyed. If requested only the selected elements are copied. |
|
*/ |
|
static void MeshCopy(MeshLeft& ml, ConstMeshRight& mr, bool selected=false, const bool adjFlag = false) |
|
{ |
|
ml.Clear(); |
|
Mesh(ml,mr,selected,adjFlag); |
|
ml.bbox.Import(mr.bbox); |
|
} |
|
|
|
static void MeshCopyConst(MeshLeft& ml, const ConstMeshRight& mr, bool selected=false, const bool adjFlag = false) |
|
{ |
|
ml.Clear(); |
|
MeshAppendConst(ml,mr,selected,adjFlag); |
|
ml.bbox.Import(mr.bbox); |
|
} |
|
/** |
|
* \brief %Append only the selected elements of second mesh to the first one. |
|
* |
|
* It is just a wrap of the main Append::Mesh() |
|
*/ |
|
static void Selected(MeshLeft& ml, ConstMeshRight& mr) |
|
{ |
|
Mesh(ml,mr,true); |
|
} |
|
|
|
}; // end of class Append |
|
|
|
|
|
|
|
|
|
|
|
} // End Namespace tri |
|
} // End Namespace vcg |
|
|
|
|
|
#endif |
|
|
|
|
|
|