You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
331 lines
9.0 KiB
331 lines
9.0 KiB
// This file is part of Eigen, a lightweight C++ template library |
|
// for linear algebra. |
|
// |
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
|
// |
|
// This Source Code Form is subject to the terms of the Mozilla |
|
// Public License v. 2.0. If a copy of the MPL was not distributed |
|
// with this file, You can obtain one at the mozilla.org home page |
|
|
|
#include "main.h" |
|
|
|
#include <Eigen/CXX11/Tensor> |
|
|
|
using Eigen::Tensor; |
|
|
|
template <int DataLayout> |
|
static void test_simple_broadcasting() |
|
{ |
|
Tensor<float, 4, DataLayout> tensor(2,3,5,7); |
|
tensor.setRandom(); |
|
array<ptrdiff_t, 4> broadcasts; |
|
broadcasts[0] = 1; |
|
broadcasts[1] = 1; |
|
broadcasts[2] = 1; |
|
broadcasts[3] = 1; |
|
|
|
Tensor<float, 4, DataLayout> no_broadcast; |
|
no_broadcast = tensor.broadcast(broadcasts); |
|
|
|
VERIFY_IS_EQUAL(no_broadcast.dimension(0), 2); |
|
VERIFY_IS_EQUAL(no_broadcast.dimension(1), 3); |
|
VERIFY_IS_EQUAL(no_broadcast.dimension(2), 5); |
|
VERIFY_IS_EQUAL(no_broadcast.dimension(3), 7); |
|
|
|
for (int i = 0; i < 2; ++i) { |
|
for (int j = 0; j < 3; ++j) { |
|
for (int k = 0; k < 5; ++k) { |
|
for (int l = 0; l < 7; ++l) { |
|
VERIFY_IS_EQUAL(tensor(i,j,k,l), no_broadcast(i,j,k,l)); |
|
} |
|
} |
|
} |
|
} |
|
|
|
broadcasts[0] = 2; |
|
broadcasts[1] = 3; |
|
broadcasts[2] = 1; |
|
broadcasts[3] = 4; |
|
Tensor<float, 4, DataLayout> broadcast; |
|
broadcast = tensor.broadcast(broadcasts); |
|
|
|
VERIFY_IS_EQUAL(broadcast.dimension(0), 4); |
|
VERIFY_IS_EQUAL(broadcast.dimension(1), 9); |
|
VERIFY_IS_EQUAL(broadcast.dimension(2), 5); |
|
VERIFY_IS_EQUAL(broadcast.dimension(3), 28); |
|
|
|
for (int i = 0; i < 4; ++i) { |
|
for (int j = 0; j < 9; ++j) { |
|
for (int k = 0; k < 5; ++k) { |
|
for (int l = 0; l < 28; ++l) { |
|
VERIFY_IS_EQUAL(tensor(i%2,j%3,k%5,l%7), broadcast(i,j,k,l)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
template <int DataLayout> |
|
static void test_vectorized_broadcasting() |
|
{ |
|
Tensor<float, 3, DataLayout> tensor(8,3,5); |
|
tensor.setRandom(); |
|
array<ptrdiff_t, 3> broadcasts; |
|
broadcasts[0] = 2; |
|
broadcasts[1] = 3; |
|
broadcasts[2] = 4; |
|
|
|
Tensor<float, 3, DataLayout> broadcast; |
|
broadcast = tensor.broadcast(broadcasts); |
|
|
|
VERIFY_IS_EQUAL(broadcast.dimension(0), 16); |
|
VERIFY_IS_EQUAL(broadcast.dimension(1), 9); |
|
VERIFY_IS_EQUAL(broadcast.dimension(2), 20); |
|
|
|
for (int i = 0; i < 16; ++i) { |
|
for (int j = 0; j < 9; ++j) { |
|
for (int k = 0; k < 20; ++k) { |
|
VERIFY_IS_EQUAL(tensor(i%8,j%3,k%5), broadcast(i,j,k)); |
|
} |
|
} |
|
} |
|
|
|
#if EIGEN_HAS_VARIADIC_TEMPLATES |
|
tensor.resize(11,3,5); |
|
#else |
|
array<Index, 3> new_dims; |
|
new_dims[0] = 11; |
|
new_dims[1] = 3; |
|
new_dims[2] = 5; |
|
tensor.resize(new_dims); |
|
#endif |
|
|
|
tensor.setRandom(); |
|
broadcast = tensor.broadcast(broadcasts); |
|
|
|
VERIFY_IS_EQUAL(broadcast.dimension(0), 22); |
|
VERIFY_IS_EQUAL(broadcast.dimension(1), 9); |
|
VERIFY_IS_EQUAL(broadcast.dimension(2), 20); |
|
|
|
for (int i = 0; i < 22; ++i) { |
|
for (int j = 0; j < 9; ++j) { |
|
for (int k = 0; k < 20; ++k) { |
|
VERIFY_IS_EQUAL(tensor(i%11,j%3,k%5), broadcast(i,j,k)); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
template <int DataLayout> |
|
static void test_static_broadcasting() |
|
{ |
|
Tensor<float, 3, DataLayout> tensor(8,3,5); |
|
tensor.setRandom(); |
|
|
|
#if defined(EIGEN_HAS_INDEX_LIST) |
|
Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3>, Eigen::type2index<4>> broadcasts; |
|
#else |
|
Eigen::array<int, 3> broadcasts; |
|
broadcasts[0] = 2; |
|
broadcasts[1] = 3; |
|
broadcasts[2] = 4; |
|
#endif |
|
|
|
Tensor<float, 3, DataLayout> broadcast; |
|
broadcast = tensor.broadcast(broadcasts); |
|
|
|
VERIFY_IS_EQUAL(broadcast.dimension(0), 16); |
|
VERIFY_IS_EQUAL(broadcast.dimension(1), 9); |
|
VERIFY_IS_EQUAL(broadcast.dimension(2), 20); |
|
|
|
for (int i = 0; i < 16; ++i) { |
|
for (int j = 0; j < 9; ++j) { |
|
for (int k = 0; k < 20; ++k) { |
|
VERIFY_IS_EQUAL(tensor(i%8,j%3,k%5), broadcast(i,j,k)); |
|
} |
|
} |
|
} |
|
|
|
#if EIGEN_HAS_VARIADIC_TEMPLATES |
|
tensor.resize(11,3,5); |
|
#else |
|
array<Index, 3> new_dims; |
|
new_dims[0] = 11; |
|
new_dims[1] = 3; |
|
new_dims[2] = 5; |
|
tensor.resize(new_dims); |
|
#endif |
|
|
|
tensor.setRandom(); |
|
broadcast = tensor.broadcast(broadcasts); |
|
|
|
VERIFY_IS_EQUAL(broadcast.dimension(0), 22); |
|
VERIFY_IS_EQUAL(broadcast.dimension(1), 9); |
|
VERIFY_IS_EQUAL(broadcast.dimension(2), 20); |
|
|
|
for (int i = 0; i < 22; ++i) { |
|
for (int j = 0; j < 9; ++j) { |
|
for (int k = 0; k < 20; ++k) { |
|
VERIFY_IS_EQUAL(tensor(i%11,j%3,k%5), broadcast(i,j,k)); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
template <int DataLayout> |
|
static void test_fixed_size_broadcasting() |
|
{ |
|
// Need to add a [] operator to the Size class for this to work |
|
#if 0 |
|
Tensor<float, 1, DataLayout> t1(10); |
|
t1.setRandom(); |
|
TensorFixedSize<float, Sizes<1>, DataLayout> t2; |
|
t2 = t2.constant(20.0f); |
|
|
|
Tensor<float, 1, DataLayout> t3 = t1 + t2.broadcast(Eigen::array<int, 1>{{10}}); |
|
for (int i = 0; i < 10; ++i) { |
|
VERIFY_IS_APPROX(t3(i), t1(i) + t2(0)); |
|
} |
|
|
|
TensorMap<TensorFixedSize<float, Sizes<1>, DataLayout> > t4(t2.data(), {{1}}); |
|
Tensor<float, 1, DataLayout> t5 = t1 + t4.broadcast(Eigen::array<int, 1>{{10}}); |
|
for (int i = 0; i < 10; ++i) { |
|
VERIFY_IS_APPROX(t5(i), t1(i) + t2(0)); |
|
} |
|
#endif |
|
} |
|
|
|
template <int DataLayout> |
|
static void test_simple_broadcasting_one_by_n() |
|
{ |
|
Tensor<float, 4, DataLayout> tensor(1,13,5,7); |
|
tensor.setRandom(); |
|
array<ptrdiff_t, 4> broadcasts; |
|
broadcasts[0] = 9; |
|
broadcasts[1] = 1; |
|
broadcasts[2] = 1; |
|
broadcasts[3] = 1; |
|
Tensor<float, 4, DataLayout> broadcast; |
|
broadcast = tensor.broadcast(broadcasts); |
|
|
|
VERIFY_IS_EQUAL(broadcast.dimension(0), 9); |
|
VERIFY_IS_EQUAL(broadcast.dimension(1), 13); |
|
VERIFY_IS_EQUAL(broadcast.dimension(2), 5); |
|
VERIFY_IS_EQUAL(broadcast.dimension(3), 7); |
|
|
|
for (int i = 0; i < 9; ++i) { |
|
for (int j = 0; j < 13; ++j) { |
|
for (int k = 0; k < 5; ++k) { |
|
for (int l = 0; l < 7; ++l) { |
|
VERIFY_IS_EQUAL(tensor(i%1,j%13,k%5,l%7), broadcast(i,j,k,l)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
template <int DataLayout> |
|
static void test_simple_broadcasting_n_by_one() |
|
{ |
|
Tensor<float, 4, DataLayout> tensor(7,3,5,1); |
|
tensor.setRandom(); |
|
array<ptrdiff_t, 4> broadcasts; |
|
broadcasts[0] = 1; |
|
broadcasts[1] = 1; |
|
broadcasts[2] = 1; |
|
broadcasts[3] = 19; |
|
Tensor<float, 4, DataLayout> broadcast; |
|
broadcast = tensor.broadcast(broadcasts); |
|
|
|
VERIFY_IS_EQUAL(broadcast.dimension(0), 7); |
|
VERIFY_IS_EQUAL(broadcast.dimension(1), 3); |
|
VERIFY_IS_EQUAL(broadcast.dimension(2), 5); |
|
VERIFY_IS_EQUAL(broadcast.dimension(3), 19); |
|
|
|
for (int i = 0; i < 7; ++i) { |
|
for (int j = 0; j < 3; ++j) { |
|
for (int k = 0; k < 5; ++k) { |
|
for (int l = 0; l < 19; ++l) { |
|
VERIFY_IS_EQUAL(tensor(i%7,j%3,k%5,l%1), broadcast(i,j,k,l)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
template <int DataLayout> |
|
static void test_simple_broadcasting_one_by_n_by_one_1d() |
|
{ |
|
Tensor<float, 3, DataLayout> tensor(1,7,1); |
|
tensor.setRandom(); |
|
array<ptrdiff_t, 3> broadcasts; |
|
broadcasts[0] = 5; |
|
broadcasts[1] = 1; |
|
broadcasts[2] = 13; |
|
Tensor<float, 3, DataLayout> broadcasted; |
|
broadcasted = tensor.broadcast(broadcasts); |
|
|
|
VERIFY_IS_EQUAL(broadcasted.dimension(0), 5); |
|
VERIFY_IS_EQUAL(broadcasted.dimension(1), 7); |
|
VERIFY_IS_EQUAL(broadcasted.dimension(2), 13); |
|
|
|
for (int i = 0; i < 5; ++i) { |
|
for (int j = 0; j < 7; ++j) { |
|
for (int k = 0; k < 13; ++k) { |
|
VERIFY_IS_EQUAL(tensor(0,j%7,0), broadcasted(i,j,k)); |
|
} |
|
} |
|
} |
|
} |
|
|
|
template <int DataLayout> |
|
static void test_simple_broadcasting_one_by_n_by_one_2d() |
|
{ |
|
Tensor<float, 4, DataLayout> tensor(1,7,13,1); |
|
tensor.setRandom(); |
|
array<ptrdiff_t, 4> broadcasts; |
|
broadcasts[0] = 5; |
|
broadcasts[1] = 1; |
|
broadcasts[2] = 1; |
|
broadcasts[3] = 19; |
|
Tensor<float, 4, DataLayout> broadcast; |
|
broadcast = tensor.broadcast(broadcasts); |
|
|
|
VERIFY_IS_EQUAL(broadcast.dimension(0), 5); |
|
VERIFY_IS_EQUAL(broadcast.dimension(1), 7); |
|
VERIFY_IS_EQUAL(broadcast.dimension(2), 13); |
|
VERIFY_IS_EQUAL(broadcast.dimension(3), 19); |
|
|
|
for (int i = 0; i < 5; ++i) { |
|
for (int j = 0; j < 7; ++j) { |
|
for (int k = 0; k < 13; ++k) { |
|
for (int l = 0; l < 19; ++l) { |
|
VERIFY_IS_EQUAL(tensor(0,j%7,k%13,0), broadcast(i,j,k,l)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
EIGEN_DECLARE_TEST(cxx11_tensor_broadcasting) |
|
{ |
|
CALL_SUBTEST(test_simple_broadcasting<ColMajor>()); |
|
CALL_SUBTEST(test_simple_broadcasting<RowMajor>()); |
|
CALL_SUBTEST(test_vectorized_broadcasting<ColMajor>()); |
|
CALL_SUBTEST(test_vectorized_broadcasting<RowMajor>()); |
|
CALL_SUBTEST(test_static_broadcasting<ColMajor>()); |
|
CALL_SUBTEST(test_static_broadcasting<RowMajor>()); |
|
CALL_SUBTEST(test_fixed_size_broadcasting<ColMajor>()); |
|
CALL_SUBTEST(test_fixed_size_broadcasting<RowMajor>()); |
|
CALL_SUBTEST(test_simple_broadcasting_one_by_n<RowMajor>()); |
|
CALL_SUBTEST(test_simple_broadcasting_n_by_one<RowMajor>()); |
|
CALL_SUBTEST(test_simple_broadcasting_one_by_n<ColMajor>()); |
|
CALL_SUBTEST(test_simple_broadcasting_n_by_one<ColMajor>()); |
|
CALL_SUBTEST(test_simple_broadcasting_one_by_n_by_one_1d<ColMajor>()); |
|
CALL_SUBTEST(test_simple_broadcasting_one_by_n_by_one_2d<ColMajor>()); |
|
CALL_SUBTEST(test_simple_broadcasting_one_by_n_by_one_1d<RowMajor>()); |
|
CALL_SUBTEST(test_simple_broadcasting_one_by_n_by_one_2d<RowMajor>()); |
|
}
|
|
|