You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
150 lines
5.3 KiB
150 lines
5.3 KiB
// This file is part of Eigen, a lightweight C++ template library |
|
// for linear algebra. |
|
// |
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
|
// |
|
// This Source Code Form is subject to the terms of the Mozilla |
|
// Public License v. 2.0. If a copy of the MPL was not distributed |
|
// with this file, You can obtain one at the mozilla.org home page |
|
|
|
#include "main.h" |
|
|
|
#include <Eigen/CXX11/Tensor> |
|
|
|
using Eigen::Tensor; |
|
using Eigen::DefaultDevice; |
|
|
|
template <int DataLayout> |
|
static void test_evals() |
|
{ |
|
Tensor<float, 2, DataLayout> input(3, 3); |
|
Tensor<float, 1, DataLayout> kernel(2); |
|
|
|
input.setRandom(); |
|
kernel.setRandom(); |
|
|
|
Tensor<float, 2, DataLayout> result(2,3); |
|
result.setZero(); |
|
Eigen::array<Tensor<float, 2>::Index, 1> dims3; |
|
dims3[0] = 0; |
|
|
|
typedef TensorEvaluator<decltype(input.convolve(kernel, dims3)), DefaultDevice> Evaluator; |
|
Evaluator eval(input.convolve(kernel, dims3), DefaultDevice()); |
|
eval.evalTo(result.data()); |
|
EIGEN_STATIC_ASSERT(Evaluator::NumDims==2ul, YOU_MADE_A_PROGRAMMING_MISTAKE); |
|
VERIFY_IS_EQUAL(eval.dimensions()[0], 2); |
|
VERIFY_IS_EQUAL(eval.dimensions()[1], 3); |
|
|
|
VERIFY_IS_APPROX(result(0,0), input(0,0)*kernel(0) + input(1,0)*kernel(1)); // index 0 |
|
VERIFY_IS_APPROX(result(0,1), input(0,1)*kernel(0) + input(1,1)*kernel(1)); // index 2 |
|
VERIFY_IS_APPROX(result(0,2), input(0,2)*kernel(0) + input(1,2)*kernel(1)); // index 4 |
|
VERIFY_IS_APPROX(result(1,0), input(1,0)*kernel(0) + input(2,0)*kernel(1)); // index 1 |
|
VERIFY_IS_APPROX(result(1,1), input(1,1)*kernel(0) + input(2,1)*kernel(1)); // index 3 |
|
VERIFY_IS_APPROX(result(1,2), input(1,2)*kernel(0) + input(2,2)*kernel(1)); // index 5 |
|
} |
|
|
|
template <int DataLayout> |
|
static void test_expr() |
|
{ |
|
Tensor<float, 2, DataLayout> input(3, 3); |
|
Tensor<float, 2, DataLayout> kernel(2, 2); |
|
input.setRandom(); |
|
kernel.setRandom(); |
|
|
|
Tensor<float, 2, DataLayout> result(2,2); |
|
Eigen::array<ptrdiff_t, 2> dims; |
|
dims[0] = 0; |
|
dims[1] = 1; |
|
result = input.convolve(kernel, dims); |
|
|
|
VERIFY_IS_APPROX(result(0,0), input(0,0)*kernel(0,0) + input(0,1)*kernel(0,1) + |
|
input(1,0)*kernel(1,0) + input(1,1)*kernel(1,1)); |
|
VERIFY_IS_APPROX(result(0,1), input(0,1)*kernel(0,0) + input(0,2)*kernel(0,1) + |
|
input(1,1)*kernel(1,0) + input(1,2)*kernel(1,1)); |
|
VERIFY_IS_APPROX(result(1,0), input(1,0)*kernel(0,0) + input(1,1)*kernel(0,1) + |
|
input(2,0)*kernel(1,0) + input(2,1)*kernel(1,1)); |
|
VERIFY_IS_APPROX(result(1,1), input(1,1)*kernel(0,0) + input(1,2)*kernel(0,1) + |
|
input(2,1)*kernel(1,0) + input(2,2)*kernel(1,1)); |
|
} |
|
|
|
template <int DataLayout> |
|
static void test_modes() { |
|
Tensor<float, 1, DataLayout> input(3); |
|
Tensor<float, 1, DataLayout> kernel(3); |
|
input(0) = 1.0f; |
|
input(1) = 2.0f; |
|
input(2) = 3.0f; |
|
kernel(0) = 0.5f; |
|
kernel(1) = 1.0f; |
|
kernel(2) = 0.0f; |
|
|
|
Eigen::array<ptrdiff_t, 1> dims; |
|
dims[0] = 0; |
|
Eigen::array<std::pair<ptrdiff_t, ptrdiff_t>, 1> padding; |
|
|
|
// Emulate VALID mode (as defined in |
|
// xxxp://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html). |
|
padding[0] = std::make_pair(0, 0); |
|
Tensor<float, 1, DataLayout> valid(1); |
|
valid = input.pad(padding).convolve(kernel, dims); |
|
VERIFY_IS_EQUAL(valid.dimension(0), 1); |
|
VERIFY_IS_APPROX(valid(0), 2.5f); |
|
|
|
// Emulate SAME mode (as defined in |
|
// xxxp://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html). |
|
padding[0] = std::make_pair(1, 1); |
|
Tensor<float, 1, DataLayout> same(3); |
|
same = input.pad(padding).convolve(kernel, dims); |
|
VERIFY_IS_EQUAL(same.dimension(0), 3); |
|
VERIFY_IS_APPROX(same(0), 1.0f); |
|
VERIFY_IS_APPROX(same(1), 2.5f); |
|
VERIFY_IS_APPROX(same(2), 4.0f); |
|
|
|
// Emulate FULL mode (as defined in |
|
// xxxp://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html). |
|
padding[0] = std::make_pair(2, 2); |
|
Tensor<float, 1, DataLayout> full(5); |
|
full = input.pad(padding).convolve(kernel, dims); |
|
VERIFY_IS_EQUAL(full.dimension(0), 5); |
|
VERIFY_IS_APPROX(full(0), 0.0f); |
|
VERIFY_IS_APPROX(full(1), 1.0f); |
|
VERIFY_IS_APPROX(full(2), 2.5f); |
|
VERIFY_IS_APPROX(full(3), 4.0f); |
|
VERIFY_IS_APPROX(full(4), 1.5f); |
|
} |
|
|
|
template <int DataLayout> |
|
static void test_strides() { |
|
Tensor<float, 1, DataLayout> input(13); |
|
Tensor<float, 1, DataLayout> kernel(3); |
|
input.setRandom(); |
|
kernel.setRandom(); |
|
|
|
Eigen::array<ptrdiff_t, 1> dims; |
|
dims[0] = 0; |
|
Eigen::array<ptrdiff_t, 1> stride_of_3; |
|
stride_of_3[0] = 3; |
|
Eigen::array<ptrdiff_t, 1> stride_of_2; |
|
stride_of_2[0] = 2; |
|
|
|
Tensor<float, 1, DataLayout> result; |
|
result = input.stride(stride_of_3).convolve(kernel, dims).stride(stride_of_2); |
|
|
|
VERIFY_IS_EQUAL(result.dimension(0), 2); |
|
VERIFY_IS_APPROX(result(0), (input(0)*kernel(0) + input(3)*kernel(1) + |
|
input(6)*kernel(2))); |
|
VERIFY_IS_APPROX(result(1), (input(6)*kernel(0) + input(9)*kernel(1) + |
|
input(12)*kernel(2))); |
|
} |
|
|
|
EIGEN_DECLARE_TEST(cxx11_tensor_convolution) |
|
{ |
|
CALL_SUBTEST(test_evals<ColMajor>()); |
|
CALL_SUBTEST(test_evals<RowMajor>()); |
|
CALL_SUBTEST(test_expr<ColMajor>()); |
|
CALL_SUBTEST(test_expr<RowMajor>()); |
|
CALL_SUBTEST(test_modes<ColMajor>()); |
|
CALL_SUBTEST(test_modes<RowMajor>()); |
|
CALL_SUBTEST(test_strides<ColMajor>()); |
|
CALL_SUBTEST(test_strides<RowMajor>()); |
|
}
|
|
|