You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
283 lines
7.5 KiB
283 lines
7.5 KiB
// This file is part of Eigen, a lightweight C++ template library |
|
// for linear algebra. |
|
// |
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
|
// |
|
// This Source Code Form is subject to the terms of the Mozilla |
|
// Public License v. 2.0. If a copy of the MPL was not distributed |
|
// with this file, You can obtain one at the mozilla.org home page |
|
|
|
#include "main.h" |
|
|
|
#include <Eigen/CXX11/Tensor> |
|
|
|
using Eigen::Tensor; |
|
using Eigen::array; |
|
|
|
template <int DataLayout> |
|
static void test_simple_shuffling() |
|
{ |
|
Tensor<float, 4, DataLayout> tensor(2,3,5,7); |
|
tensor.setRandom(); |
|
array<ptrdiff_t, 4> shuffles; |
|
shuffles[0] = 0; |
|
shuffles[1] = 1; |
|
shuffles[2] = 2; |
|
shuffles[3] = 3; |
|
|
|
Tensor<float, 4, DataLayout> no_shuffle; |
|
no_shuffle = tensor.shuffle(shuffles); |
|
|
|
VERIFY_IS_EQUAL(no_shuffle.dimension(0), 2); |
|
VERIFY_IS_EQUAL(no_shuffle.dimension(1), 3); |
|
VERIFY_IS_EQUAL(no_shuffle.dimension(2), 5); |
|
VERIFY_IS_EQUAL(no_shuffle.dimension(3), 7); |
|
|
|
for (int i = 0; i < 2; ++i) { |
|
for (int j = 0; j < 3; ++j) { |
|
for (int k = 0; k < 5; ++k) { |
|
for (int l = 0; l < 7; ++l) { |
|
VERIFY_IS_EQUAL(tensor(i,j,k,l), no_shuffle(i,j,k,l)); |
|
} |
|
} |
|
} |
|
} |
|
|
|
shuffles[0] = 2; |
|
shuffles[1] = 3; |
|
shuffles[2] = 1; |
|
shuffles[3] = 0; |
|
Tensor<float, 4, DataLayout> shuffle; |
|
shuffle = tensor.shuffle(shuffles); |
|
|
|
VERIFY_IS_EQUAL(shuffle.dimension(0), 5); |
|
VERIFY_IS_EQUAL(shuffle.dimension(1), 7); |
|
VERIFY_IS_EQUAL(shuffle.dimension(2), 3); |
|
VERIFY_IS_EQUAL(shuffle.dimension(3), 2); |
|
|
|
for (int i = 0; i < 2; ++i) { |
|
for (int j = 0; j < 3; ++j) { |
|
for (int k = 0; k < 5; ++k) { |
|
for (int l = 0; l < 7; ++l) { |
|
VERIFY_IS_EQUAL(tensor(i,j,k,l), shuffle(k,l,j,i)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
template <int DataLayout> |
|
static void test_expr_shuffling() |
|
{ |
|
Tensor<float, 4, DataLayout> tensor(2,3,5,7); |
|
tensor.setRandom(); |
|
|
|
array<ptrdiff_t, 4> shuffles; |
|
shuffles[0] = 2; |
|
shuffles[1] = 3; |
|
shuffles[2] = 1; |
|
shuffles[3] = 0; |
|
Tensor<float, 4, DataLayout> expected; |
|
expected = tensor.shuffle(shuffles); |
|
|
|
Tensor<float, 4, DataLayout> result(5, 7, 3, 2); |
|
|
|
array<ptrdiff_t, 4> src_slice_dim{{2, 3, 1, 7}}; |
|
array<ptrdiff_t, 4> src_slice_start{{0, 0, 0, 0}}; |
|
array<ptrdiff_t, 4> dst_slice_dim{{1, 7, 3, 2}}; |
|
array<ptrdiff_t, 4> dst_slice_start{{0, 0, 0, 0}}; |
|
|
|
for (int i = 0; i < 5; ++i) { |
|
result.slice(dst_slice_start, dst_slice_dim) = |
|
tensor.slice(src_slice_start, src_slice_dim).shuffle(shuffles); |
|
src_slice_start[2] += 1; |
|
dst_slice_start[0] += 1; |
|
} |
|
|
|
VERIFY_IS_EQUAL(result.dimension(0), 5); |
|
VERIFY_IS_EQUAL(result.dimension(1), 7); |
|
VERIFY_IS_EQUAL(result.dimension(2), 3); |
|
VERIFY_IS_EQUAL(result.dimension(3), 2); |
|
|
|
for (int i = 0; i < expected.dimension(0); ++i) { |
|
for (int j = 0; j < expected.dimension(1); ++j) { |
|
for (int k = 0; k < expected.dimension(2); ++k) { |
|
for (int l = 0; l < expected.dimension(3); ++l) { |
|
VERIFY_IS_EQUAL(result(i,j,k,l), expected(i,j,k,l)); |
|
} |
|
} |
|
} |
|
} |
|
|
|
dst_slice_start[0] = 0; |
|
result.setRandom(); |
|
for (int i = 0; i < 5; ++i) { |
|
result.slice(dst_slice_start, dst_slice_dim) = |
|
tensor.shuffle(shuffles).slice(dst_slice_start, dst_slice_dim); |
|
dst_slice_start[0] += 1; |
|
} |
|
|
|
for (int i = 0; i < expected.dimension(0); ++i) { |
|
for (int j = 0; j < expected.dimension(1); ++j) { |
|
for (int k = 0; k < expected.dimension(2); ++k) { |
|
for (int l = 0; l < expected.dimension(3); ++l) { |
|
VERIFY_IS_EQUAL(result(i,j,k,l), expected(i,j,k,l)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
template <int DataLayout> |
|
static void test_shuffling_as_value() |
|
{ |
|
Tensor<float, 4, DataLayout> tensor(2,3,5,7); |
|
tensor.setRandom(); |
|
array<ptrdiff_t, 4> shuffles; |
|
shuffles[2] = 0; |
|
shuffles[3] = 1; |
|
shuffles[1] = 2; |
|
shuffles[0] = 3; |
|
Tensor<float, 4, DataLayout> shuffle(5,7,3,2); |
|
shuffle.shuffle(shuffles) = tensor; |
|
|
|
VERIFY_IS_EQUAL(shuffle.dimension(0), 5); |
|
VERIFY_IS_EQUAL(shuffle.dimension(1), 7); |
|
VERIFY_IS_EQUAL(shuffle.dimension(2), 3); |
|
VERIFY_IS_EQUAL(shuffle.dimension(3), 2); |
|
|
|
for (int i = 0; i < 2; ++i) { |
|
for (int j = 0; j < 3; ++j) { |
|
for (int k = 0; k < 5; ++k) { |
|
for (int l = 0; l < 7; ++l) { |
|
VERIFY_IS_EQUAL(tensor(i,j,k,l), shuffle(k,l,j,i)); |
|
} |
|
} |
|
} |
|
} |
|
|
|
array<ptrdiff_t, 4> no_shuffle; |
|
no_shuffle[0] = 0; |
|
no_shuffle[1] = 1; |
|
no_shuffle[2] = 2; |
|
no_shuffle[3] = 3; |
|
Tensor<float, 4, DataLayout> shuffle2(5,7,3,2); |
|
shuffle2.shuffle(shuffles) = tensor.shuffle(no_shuffle); |
|
for (int i = 0; i < 5; ++i) { |
|
for (int j = 0; j < 7; ++j) { |
|
for (int k = 0; k < 3; ++k) { |
|
for (int l = 0; l < 2; ++l) { |
|
VERIFY_IS_EQUAL(shuffle2(i,j,k,l), shuffle(i,j,k,l)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
template <int DataLayout> |
|
static void test_shuffle_unshuffle() |
|
{ |
|
Tensor<float, 4, DataLayout> tensor(2,3,5,7); |
|
tensor.setRandom(); |
|
|
|
// Choose a random permutation. |
|
array<ptrdiff_t, 4> shuffles; |
|
for (int i = 0; i < 4; ++i) { |
|
shuffles[i] = i; |
|
} |
|
array<ptrdiff_t, 4> shuffles_inverse; |
|
for (int i = 0; i < 4; ++i) { |
|
const ptrdiff_t index = internal::random<ptrdiff_t>(i, 3); |
|
shuffles_inverse[shuffles[index]] = i; |
|
std::swap(shuffles[i], shuffles[index]); |
|
} |
|
|
|
Tensor<float, 4, DataLayout> shuffle; |
|
shuffle = tensor.shuffle(shuffles).shuffle(shuffles_inverse); |
|
|
|
VERIFY_IS_EQUAL(shuffle.dimension(0), 2); |
|
VERIFY_IS_EQUAL(shuffle.dimension(1), 3); |
|
VERIFY_IS_EQUAL(shuffle.dimension(2), 5); |
|
VERIFY_IS_EQUAL(shuffle.dimension(3), 7); |
|
|
|
for (int i = 0; i < 2; ++i) { |
|
for (int j = 0; j < 3; ++j) { |
|
for (int k = 0; k < 5; ++k) { |
|
for (int l = 0; l < 7; ++l) { |
|
VERIFY_IS_EQUAL(tensor(i,j,k,l), shuffle(i,j,k,l)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
template <int DataLayout> |
|
static void test_empty_shuffling() |
|
{ |
|
Tensor<float, 4, DataLayout> tensor(2,3,0,7); |
|
tensor.setRandom(); |
|
array<ptrdiff_t, 4> shuffles; |
|
shuffles[0] = 0; |
|
shuffles[1] = 1; |
|
shuffles[2] = 2; |
|
shuffles[3] = 3; |
|
|
|
Tensor<float, 4, DataLayout> no_shuffle; |
|
no_shuffle = tensor.shuffle(shuffles); |
|
|
|
VERIFY_IS_EQUAL(no_shuffle.dimension(0), 2); |
|
VERIFY_IS_EQUAL(no_shuffle.dimension(1), 3); |
|
VERIFY_IS_EQUAL(no_shuffle.dimension(2), 0); |
|
VERIFY_IS_EQUAL(no_shuffle.dimension(3), 7); |
|
|
|
for (int i = 0; i < 2; ++i) { |
|
for (int j = 0; j < 3; ++j) { |
|
for (int k = 0; k < 0; ++k) { |
|
for (int l = 0; l < 7; ++l) { |
|
VERIFY_IS_EQUAL(tensor(i,j,k,l), no_shuffle(i,j,k,l)); |
|
} |
|
} |
|
} |
|
} |
|
|
|
shuffles[0] = 2; |
|
shuffles[1] = 3; |
|
shuffles[2] = 1; |
|
shuffles[3] = 0; |
|
Tensor<float, 4, DataLayout> shuffle; |
|
shuffle = tensor.shuffle(shuffles); |
|
|
|
VERIFY_IS_EQUAL(shuffle.dimension(0), 0); |
|
VERIFY_IS_EQUAL(shuffle.dimension(1), 7); |
|
VERIFY_IS_EQUAL(shuffle.dimension(2), 3); |
|
VERIFY_IS_EQUAL(shuffle.dimension(3), 2); |
|
|
|
for (int i = 0; i < 2; ++i) { |
|
for (int j = 0; j < 3; ++j) { |
|
for (int k = 0; k < 0; ++k) { |
|
for (int l = 0; l < 7; ++l) { |
|
VERIFY_IS_EQUAL(tensor(i,j,k,l), shuffle(k,l,j,i)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
EIGEN_DECLARE_TEST(cxx11_tensor_shuffling) |
|
{ |
|
CALL_SUBTEST(test_simple_shuffling<ColMajor>()); |
|
CALL_SUBTEST(test_simple_shuffling<RowMajor>()); |
|
CALL_SUBTEST(test_expr_shuffling<ColMajor>()); |
|
CALL_SUBTEST(test_expr_shuffling<RowMajor>()); |
|
CALL_SUBTEST(test_shuffling_as_value<ColMajor>()); |
|
CALL_SUBTEST(test_shuffling_as_value<RowMajor>()); |
|
CALL_SUBTEST(test_shuffle_unshuffle<ColMajor>()); |
|
CALL_SUBTEST(test_shuffle_unshuffle<RowMajor>()); |
|
CALL_SUBTEST(test_empty_shuffling<ColMajor>()); |
|
CALL_SUBTEST(test_empty_shuffling<RowMajor>()); |
|
}
|
|
|