You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
461 lines
16 KiB
461 lines
16 KiB
/**************************************************************************** |
|
* VCGLib o o * |
|
* Visual and Computer Graphics Library o o * |
|
* _ O _ * |
|
* Copyright(C) 2004-2016 \/)\/ * |
|
* Visual Computing Lab /\/| * |
|
* ISTI - Italian National Research Council | * |
|
* \ * |
|
* All rights reserved. * |
|
* * |
|
* This program is free software; you can redistribute it and/or modify * |
|
* it under the terms of the GNU General Public License as published by * |
|
* the Free Software Foundation; either version 2 of the License, or * |
|
* (at your option) any later version. * |
|
* * |
|
* This program is distributed in the hope that it will be useful, * |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of * |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * |
|
* for more details. * |
|
* * |
|
****************************************************************************/ |
|
#ifndef CUT_TREE_H |
|
#define CUT_TREE_H |
|
|
|
#include<vcg/complex/complex.h> |
|
#include <vcg/space/index/kdtree/kdtree.h> |
|
#include<vcg/complex/algorithms/update/quality.h> |
|
#include<vcg/complex/algorithms/update/color.h> |
|
|
|
namespace vcg { |
|
namespace tri { |
|
/** |
|
* @brief The CutTree class |
|
* |
|
* This class implements a cut tree algorithm that can be used to open a mesh into a topological disk. |
|
*/ |
|
template <class MeshType> |
|
class CutTree |
|
{ |
|
public: |
|
typedef typename MeshType::ScalarType ScalarType; |
|
typedef typename MeshType::CoordType CoordType; |
|
typedef typename MeshType::VertexType VertexType; |
|
typedef typename MeshType::VertexPointer VertexPointer; |
|
typedef typename MeshType::VertexIterator VertexIterator; |
|
typedef typename MeshType::EdgeIterator EdgeIterator; |
|
typedef typename MeshType::EdgeType EdgeType; |
|
typedef typename MeshType::FaceType FaceType; |
|
typedef typename MeshType::FacePointer FacePointer; |
|
typedef typename MeshType::FaceIterator FaceIterator; |
|
typedef Box3<ScalarType> Box3Type; |
|
typedef typename face::Pos<FaceType> PosType; |
|
typedef typename tri::UpdateTopology<MeshType>::PEdge PEdge; |
|
|
|
MeshType &base; |
|
|
|
CutTree(MeshType &_m) :base(_m){} |
|
|
|
|
|
// Perform a simple optimization of the tree by applying a simple shortcuts: |
|
// if the endpoints of two consecutive edges are connected by an edge existing on base mesh just use that edges |
|
|
|
void OptimizeTree(KdTree<ScalarType> &kdtree, MeshType &t) |
|
{ |
|
tri::Allocator<MeshType>::CompactEveryVector(t); |
|
int lastEn=t.en; |
|
do |
|
{ |
|
lastEn=t.en; |
|
tri::UpdateTopology<MeshType>::VertexEdge(t); |
|
|
|
// First simple loop that search for 2->1 moves. |
|
for(VertexIterator vi=t.vert.begin();vi!=t.vert.end();++vi) |
|
{ |
|
std::vector<VertexType *> starVec; |
|
edge::VVStarVE(&*vi,starVec); |
|
if(starVec.size()==2) // middle vertex has to be 1-manifold |
|
{ |
|
PosType pos; |
|
if(ExistEdge(kdtree,starVec[0]->P(),starVec[1]->P(),pos)) |
|
edge::VEEdgeCollapse(t,&*vi); |
|
} |
|
} |
|
tri::Allocator<MeshType>::CompactEveryVector(t); |
|
} |
|
while(t.en<lastEn); |
|
} |
|
|
|
|
|
/** * @brief ExistEdge |
|
* @param kdtree the kd-tree used to query the base mesh |
|
* @param p0 first point |
|
* @param p1 second point |
|
* @param fpos position of the edge found on the base mesh |
|
* @return true if an edge exists between p0 and p1, false otherwise. |
|
* |
|
* This function checks if there is an edge in the base mesh that connects two points p0 and p1. |
|
* If such an edge exists, it sets fpos to the position of that edge. |
|
* It uses a kdtree to retrieve the closest vertices to p0 and p1 on the original mesh. |
|
* |
|
*/ |
|
bool ExistEdge(KdTree<ScalarType> &kdtree, CoordType &p0, CoordType &p1, PosType &fpos) |
|
{ |
|
ScalarType locEps = SquaredDistance(p0,p1)/100000.0; |
|
typedef typename KdTree<ScalarType>::PriorityQueue PriorityQueueType; |
|
VertexType *v0=0,*v1=0; |
|
PriorityQueueType queue0,queue1; |
|
|
|
kdtree.doQueryK(p0,3,queue0); |
|
kdtree.doQueryK(p1,3,queue1); |
|
|
|
for (int i = 0; i < queue0.getNofElements(); i++) { |
|
int neightId0 = queue0.getIndex(i); |
|
if(SquaredDistance(base.vert[neightId0].cP(),p0) < locEps) |
|
{ |
|
v0 = &base.vert[neightId0]; |
|
for (int j = 0; j < queue1.getNofElements(); j++) { |
|
int neightId1 = queue1.getIndex(j); |
|
if(SquaredDistance(base.vert[neightId1].cP(),p1) < locEps) |
|
{ |
|
v1 = &base.vert[neightId1]; |
|
fpos = PosType(v0->VFp(),v0); |
|
assert(fpos.V()==v0); |
|
PosType startPos=fpos; |
|
do |
|
{ |
|
fpos.FlipE(); fpos.FlipF(); |
|
if(fpos.VFlip()== v1) return true; |
|
} while(startPos!=fpos); |
|
} |
|
} |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
// Given two points return true if on the base mesh there exist an edge with that two coords |
|
// if return true the pos indicate the found edge. |
|
bool ExistEdgeOld(KdTree<ScalarType> &kdtree, CoordType &p0, CoordType &p1, PosType &fpos) |
|
{ |
|
ScalarType locEps = SquaredDistance(p0,p1)/100000.0; |
|
|
|
VertexType *v0=0,*v1=0; |
|
unsigned int veInd; |
|
ScalarType sqdist; |
|
kdtree.doQueryClosest(p0,veInd,sqdist); |
|
if(sqdist<locEps) |
|
v0 = &base.vert[veInd]; |
|
kdtree.doQueryClosest(p1,veInd,sqdist); |
|
if(sqdist<locEps) |
|
v1 = &base.vert[veInd]; |
|
if(v0 && v1) |
|
{ |
|
fpos =PosType(v0->VFp(),v0); |
|
assert(fpos.V()==v0); |
|
PosType startPos=fpos; |
|
do |
|
{ |
|
fpos.FlipE(); fpos.FlipF(); |
|
if(fpos.VFlip()== v1) return true; |
|
} while(startPos!=fpos); |
|
} |
|
return false; |
|
} |
|
|
|
int findNonVisitedEdgesDuringRetract(VertexType * vp, EdgeType * &ep) |
|
{ |
|
std::vector<EdgeType *> starVec; |
|
edge::VEStarVE(&*vp,starVec); |
|
int cnt =0; |
|
for(size_t i=0;i<starVec.size();++i) { |
|
if(!starVec[i]->IsV()) { |
|
cnt++; |
|
ep = starVec[i]; |
|
} |
|
} |
|
return cnt; |
|
} |
|
|
|
bool IsBoundaryVertexOnBase(KdTree<ScalarType> &kdtree, const CoordType &p) |
|
{ |
|
VertexType *v0=0; |
|
unsigned int veInd; |
|
ScalarType sqdist; |
|
kdtree.doQueryClosest(p,veInd,sqdist); |
|
if(sqdist>0) { assert(0); } |
|
v0 = &base.vert[veInd]; |
|
return v0->IsB(); |
|
} |
|
|
|
/** |
|
* @brief Retract |
|
* @param t the edgemesh containing the visit tree. |
|
* It retracts all the 'dangling' parts of the tree, so that remains only the polylines marking where two different 'fronts' merged. |
|
* If the mesh was already equivalent to a disk this process delete ALL the edges of the visit-tree |
|
* |
|
*/ |
|
void Retract(KdTree<ScalarType> &kdtree, MeshType &t) |
|
{ |
|
// printf("Retracting a tree of %i edges and %i vertices\n",t.en,t.vn); |
|
tri::UpdateTopology<MeshType>::VertexEdge(t); |
|
tri::Allocator<MeshType>::CompactEveryVector(t); |
|
std::stack<VertexType *> vertStack; |
|
|
|
// Put on the stack all the vertex with just a single incident edge. |
|
ForEachVertex(t, [&](VertexType &v){ |
|
if(edge::VEDegree<EdgeType>(&v) ==1) |
|
vertStack.push(&v); |
|
}); |
|
|
|
tri::UpdateFlags<MeshType>::EdgeClearV(t); |
|
tri::UpdateFlags<MeshType>::VertexClearV(t); |
|
|
|
int unvisitedEdgeNum = t.en; |
|
while((!vertStack.empty()) && (unvisitedEdgeNum > 2) ) |
|
{ |
|
VertexType *vp = vertStack.top(); |
|
vertStack.pop(); |
|
vp->C()=Color4b::Blue; |
|
EdgeType *ep=0; |
|
int eCnt = findNonVisitedEdgesDuringRetract(vp,ep); |
|
if(eCnt==1) // We have only one non visited edge over vp |
|
{ |
|
assert(!ep->IsV()); |
|
ep->SetV(); |
|
--unvisitedEdgeNum; |
|
VertexType *otherVertP; |
|
if(ep->V(0)==vp) otherVertP = ep->V(1); |
|
else otherVertP = ep->V(0); |
|
vertStack.push(otherVertP); |
|
} |
|
} |
|
// printf("UnvisitedEdge Num %i\n",unvisitedEdgeNum); |
|
assert(unvisitedEdgeNum >0); |
|
for(size_t i =0; i<t.edge.size();++i){ |
|
PosType fpos; |
|
if( ExistEdgeOld(kdtree, t.edge[i].P(0), t.edge[i].P(1), fpos)){ |
|
if(fpos.IsBorder()) { |
|
t.edge[i].SetV(); |
|
} |
|
} |
|
else assert(0); |
|
} |
|
|
|
// All the boundary edges are in the initial tree so the clean boundary loops chains remains as irreducible loops |
|
// We delete them (leaving dangling edges with a vertex on the boundary) |
|
for(size_t i =0; i<t.edge.size();++i){ |
|
if (t.edge[i].IsV()) |
|
tri::Allocator<MeshType>::DeleteEdge(t,t.edge[i]) ; |
|
} |
|
|
|
// assert(t.en >0); Note if the mesh was already a disk we remove all the edges of the visit tree |
|
tri::Clean<MeshType>::RemoveUnreferencedVertex(t); |
|
tri::Allocator<MeshType>::CompactEveryVector(t); |
|
} |
|
|
|
/** \brief Main function |
|
* |
|
* It builds a cut tree that open the mesh into a topological disk |
|
* It works in two steps: |
|
* 1) It builds a visit tree, that is a graph of the edges where a face-face visit |
|
* of the mesh has encountered already visited face. After a complete visit of a mesh this graph |
|
* contains a kind of 'walls of the labirinth connecting all the faces' structure. |
|
* 2) It retracts this graph, so that the 'dangling' edges that are not needed |
|
* to connect the faces are removed. If the mesh is not a topological disk this |
|
* process will leave just the edges that defines a cut that open the mesh into a disk. |
|
* |
|
* Note that |
|
* - if the mesh is already a disk this process will return a null cut. |
|
* - if the mesh is closed it will returns a cut composed by just two edges |
|
* |
|
*/ |
|
void Build(MeshType &dualMesh, int startingFaceInd=0) |
|
{ |
|
tri::UpdateTopology<MeshType>::FaceFace(base); |
|
tri::UpdateTopology<MeshType>::VertexFace(base); |
|
|
|
BuildVisitTree(dualMesh,startingFaceInd); |
|
// BuildDijkstraVisitTree(dualMesh,startingFaceInd); |
|
|
|
VertexConstDataWrapper<MeshType > vdw(base); |
|
KdTree<ScalarType> kdtree(vdw); |
|
Retract(kdtree,dualMesh); |
|
OptimizeTree(kdtree, dualMesh); |
|
tri::UpdateBounding<MeshType>::Box(dualMesh); |
|
} |
|
|
|
/* Auxiliary class for keeping the heap of vertices to visit and their estimated distance */ |
|
struct FaceDist{ |
|
FaceDist(FacePointer _f):f(_f),dist(_f->Q()){} |
|
FacePointer f; |
|
ScalarType dist; |
|
bool operator < (const FaceDist &o) const |
|
{ |
|
if( dist != o.dist) |
|
return dist > o.dist; |
|
return f<o.f; |
|
} |
|
}; |
|
|
|
/// Still not working.... |
|
void BuildDijkstraVisitTree(MeshType &dualMesh, int startingFaceInd=0, ScalarType maxDistanceThr=std::numeric_limits<ScalarType>::max()) |
|
{ |
|
tri::RequireFFAdjacency(base); |
|
tri::RequirePerFaceMark(base); |
|
tri::RequirePerFaceQuality(base); |
|
typename MeshType::template PerFaceAttributeHandle<FacePointer> parentHandle |
|
= tri::Allocator<MeshType>::template GetPerFaceAttribute<FacePointer>(base, "parent"); |
|
|
|
std::vector<FacePointer> seedVec; |
|
seedVec.push_back(&base.face[startingFaceInd]); |
|
|
|
std::vector<FaceDist> Heap; |
|
tri::UnMarkAll(base); |
|
tri::UpdateQuality<MeshType>::FaceConstant(base,0); |
|
ForEachVertex(base, [&](VertexType &v){ |
|
tri::Allocator<MeshType>::AddVertex(dualMesh,v.cP()); |
|
}); |
|
|
|
// Initialize the face heap; |
|
// All faces in the heap are already marked; Q() store the distance from the source faces; |
|
for(size_t i=0;i<seedVec.size();++i) |
|
{ |
|
seedVec[i]->Q()=0; |
|
Heap.push_back(FaceDist(seedVec[i])); |
|
} |
|
// Main Loop |
|
int boundary=0; |
|
std::make_heap(Heap.begin(),Heap.end()); |
|
|
|
int vCnt=0; |
|
int eCnt=0; |
|
int fCnt=0; |
|
|
|
// The main idea is that in the heap we maintain all the faces to be visited. |
|
int nonDiskCnt=0; |
|
while(!Heap.empty() && nonDiskCnt<10) |
|
{ |
|
int eulerChi= vCnt-eCnt+fCnt; |
|
if(eulerChi==1) nonDiskCnt=0; |
|
else ++nonDiskCnt; |
|
// printf("HeapSize %i: %i - %i + %i = %i\n",Heap.size(), vCnt,eCnt,fCnt,eulerChi); |
|
pop_heap(Heap.begin(),Heap.end()); |
|
FacePointer currFp = (Heap.back()).f; |
|
printf("HeapSize %i , pop face %i Dist %f heapdist %f(%s)\n", |
|
Heap.size(), tri::Index(base,currFp), currFp->Q(),Heap.back().dist, tri::IsMarked(base,currFp)?"visited":""); |
|
if(tri::IsMarked(base,currFp) && currFp->Q() == Heap.back().dist) |
|
{ |
|
// printf("Found an already visited face %f %f \n",Heap.back().dist, Heap.back().f->Q()); |
|
//assert(Heap.back().dist != currFp->Q()); |
|
Heap.pop_back(); |
|
continue; |
|
} |
|
Heap.pop_back(); |
|
++fCnt; |
|
eCnt+=3; |
|
tri::Mark(base,currFp); |
|
|
|
for(int i=0;i<3;++i) |
|
{ |
|
if(!currFp->V(i)->IsV()) {++vCnt; currFp->V(i)->SetV();} |
|
|
|
FacePointer nextFp = currFp->FFp(i); |
|
if( tri::IsMarked(base,nextFp) ) |
|
{ |
|
eCnt-=1; |
|
// printf("is marked\n"); |
|
if(nextFp != parentHandle[currFp] ) |
|
{ |
|
if(currFp>nextFp){ |
|
tri::Allocator<MeshType>::AddEdge(dualMesh,tri::Index(base,currFp->V0(i)), tri::Index(base,currFp->V1(i))); |
|
} |
|
} |
|
} |
|
else // add it to the heap; |
|
{ |
|
// printf("is NOT marked\n"); |
|
parentHandle[nextFp] = currFp; |
|
ScalarType nextDist = currFp->Q() + Distance(Barycenter(*currFp),Barycenter(*nextFp)); |
|
int adjMarkedNum=0; |
|
for(int k=0;k<3;++k) if(tri::IsMarked(base,nextFp->FFp(k))) ++adjMarkedNum; |
|
if(nextDist < maxDistanceThr || adjMarkedNum>1) |
|
{ |
|
nextFp->Q() = nextDist; |
|
Heap.push_back(FaceDist(nextFp)); |
|
push_heap(Heap.begin(),Heap.end()); |
|
} |
|
else |
|
{ |
|
printf("boundary %i\n",++boundary); |
|
tri::Allocator<MeshType>::AddEdge(dualMesh,tri::Index(base,currFp->V0(i)), tri::Index(base,currFp->V1(i))); |
|
} |
|
} |
|
} |
|
} // End while |
|
printf("Boundary %i\n",boundary); |
|
printf("fulltree %i vn %i en \n",dualMesh.vn, dualMesh.en); |
|
int dupVert=tri::Clean<MeshType>::RemoveDuplicateVertex(dualMesh,true); // printf("Removed %i dup vert\n",dupVert); |
|
int dupEdge=tri::Clean<MeshType>::RemoveDuplicateEdge(dualMesh); // printf("Removed %i dup edges %i\n",dupEdge,dualMesh.EN()); |
|
tri::Clean<MeshType>::RemoveUnreferencedVertex(dualMesh); |
|
printf("fulltree %i vn %i en \n",dualMesh.vn, dualMesh.en); |
|
|
|
tri::io::ExporterPLY<MeshType>::Save(dualMesh,"fulltree.ply",tri::io::Mask::IOM_EDGEINDEX); |
|
tri::UpdateColor<MeshType>::PerFaceQualityRamp(base); |
|
tri::io::ExporterPLY<MeshType>::Save(base,"colored_Bydistance.ply",tri::io::Mask::IOM_FACECOLOR); |
|
} |
|
|
|
// \brief This function build a cut tree. |
|
// |
|
// First we make a bread first FF face visit. |
|
// Each time that we encounter a visited face we add to the tree the edge |
|
// that brings to the already visited face. |
|
// this structure build a dense graph and we retract this graph retracting each |
|
// leaf until we remains with just the loops that cuts the object. |
|
|
|
void BuildVisitTree(MeshType &dualMesh, int startingFaceInd=0) |
|
{ |
|
tri::UpdateFlags<MeshType>::FaceClearV(base); |
|
tri::UpdateFlags<MeshType>::VertexBorderFromFaceAdj(base); |
|
std::vector<face::Pos<FaceType> > visitStack; // the stack contain the pos on the 'starting' face. |
|
|
|
base.face[startingFaceInd].SetV(); |
|
for(int i=0;i<3;++i) |
|
visitStack.push_back(PosType(&(base.face[startingFaceInd]),i,base.face[startingFaceInd].V(i))); |
|
|
|
int cnt=1; |
|
|
|
while(!visitStack.empty()) |
|
{ |
|
std::swap(visitStack.back(),visitStack[rand()%visitStack.size()]); |
|
PosType c = visitStack.back(); |
|
visitStack.pop_back(); |
|
assert(c.F()->IsV()); |
|
c.F()->C() = Color4b::ColorRamp(0,base.fn,cnt); |
|
c.FlipF(); |
|
if(!c.F()->IsV()) |
|
{ |
|
++cnt; |
|
c.F()->SetV(); |
|
c.FlipE();c.FlipV(); |
|
visitStack.push_back(c); |
|
c.FlipE();c.FlipV(); |
|
visitStack.push_back(c); |
|
} |
|
else |
|
{ |
|
tri::Allocator<MeshType>::AddEdge(dualMesh,c.V()->P(),c.VFlip()->P()); |
|
} |
|
} |
|
assert(cnt==base.fn); |
|
|
|
tri::Clean<MeshType>::RemoveDuplicateVertex(dualMesh); |
|
// tri::io::ExporterPLY<MeshType>::Save(dualMesh,"fulltree.ply",tri::io::Mask::IOM_EDGEINDEX); |
|
} |
|
|
|
}; |
|
} // end namespace tri |
|
} // end namespace vcg |
|
|
|
#endif // CUT_TREE_H
|
|
|