You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
412 lines
12 KiB
412 lines
12 KiB
/**************************************************************************** |
|
* VCGLib o o * |
|
* Visual and Computer Graphics Library o o * |
|
* _ O _ * |
|
* Copyright(C) 2004-2016 \/)\/ * |
|
* Visual Computing Lab /\/| * |
|
* ISTI - Italian National Research Council | * |
|
* \ * |
|
* All rights reserved. * |
|
* * |
|
* This program is free software; you can redistribute it and/or modify * |
|
* it under the terms of the GNU General Public License as published by * |
|
* the Free Software Foundation; either version 2 of the License, or * |
|
* (at your option) any later version. * |
|
* * |
|
* This program is distributed in the hope that it will be useful, * |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of * |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * |
|
* for more details. * |
|
* * |
|
****************************************************************************/ |
|
#ifndef __VCG_HISTOGRAM |
|
#define __VCG_HISTOGRAM |
|
|
|
#include <assert.h> |
|
#include <string> |
|
#include <limits> |
|
#include <vector> |
|
#include <vcg/math/base.h> |
|
#include <stdio.h> |
|
|
|
namespace vcg { |
|
|
|
template <class ScalarType> |
|
class Distribution |
|
{ |
|
private: |
|
std::vector<ScalarType> vec; |
|
bool dirty; |
|
double valSum; |
|
double sqrdValSum; |
|
double avg; |
|
double sqrdAvg; |
|
double rms; |
|
double min_v; |
|
double max_v; |
|
|
|
|
|
public: |
|
|
|
Distribution() { Clear(); } |
|
|
|
void Clear() |
|
{ |
|
vec.clear(); |
|
dirty=true; |
|
min_v = std::numeric_limits<float>::max(); |
|
max_v = -std::numeric_limits<float>::max(); |
|
} |
|
|
|
void Add(const ScalarType v) |
|
{ |
|
vec.push_back(v); |
|
dirty=true; |
|
if(v<min_v) min_v=v; |
|
if(v>max_v) max_v=v; |
|
} |
|
|
|
ScalarType Min() const { return min_v; } |
|
ScalarType Max() const { return max_v; } |
|
ScalarType Cnt() const { return ScalarType(vec.size()); } |
|
|
|
ScalarType Sum(){ DirtyCheck(); return valSum; } |
|
ScalarType Avg(){ DirtyCheck(); return avg;} |
|
//! Returns the Root Mean Square of the data. |
|
ScalarType RMS(){ DirtyCheck(); return rms;} |
|
|
|
//! \brief Returns the variance of the data. |
|
/// the average of the squares less the square of the average. |
|
ScalarType Variance(){ DirtyCheck(); return sqrdAvg - avg*avg ;} |
|
|
|
//! Returns the standard deviation of the data. |
|
ScalarType StandardDeviation(){ DirtyCheck(); return sqrt( Variance() );} |
|
|
|
void DirtyCheck() |
|
{ |
|
if(!dirty) return; |
|
std::sort(vec.begin(),vec.end()); |
|
valSum=0; |
|
sqrdValSum=0; |
|
typename std::vector<ScalarType>::iterator vi; |
|
for(vi=vec.begin();vi!=vec.end();++vi) |
|
{ |
|
valSum += double(*vi); |
|
sqrdValSum += double(*vi)*double(*vi); |
|
} |
|
avg = valSum/double(vec.size()); |
|
sqrdAvg = sqrdValSum/double(vec.size()); |
|
rms = math::Sqrt(sqrdAvg); |
|
dirty=false; |
|
} |
|
|
|
ScalarType Percentile(ScalarType perc) |
|
{ |
|
assert(!vec.empty()); |
|
assert(perc>=0 && perc<=1); |
|
DirtyCheck(); |
|
int index = vec.size() *perc -1; |
|
|
|
if(index< 0 ) index = 0; |
|
|
|
return vec[index]; |
|
} |
|
}; |
|
|
|
|
|
|
|
/** |
|
* Histogram. |
|
* |
|
* This class implements a single-value histogram. |
|
*/ |
|
template <class ScalarType> |
|
class Histogram |
|
{ |
|
|
|
// public data members |
|
protected: |
|
|
|
std::vector <ScalarType> H; //! Counters for bins. |
|
std::vector <ScalarType> R; //! Range for bins. |
|
ScalarType minv; //! Minimum value. |
|
ScalarType maxv; //! Maximum value. |
|
ScalarType minElem; //! Minimum value. |
|
ScalarType maxElem; //! Maximum value. |
|
int n; //! Number of vaild intervals stored between minv and maxv. |
|
|
|
|
|
/// incrementally updated values |
|
ScalarType cnt; //! Number of accumulated samples. |
|
ScalarType sum; //! Average. |
|
ScalarType rms; //! Root mean square. |
|
|
|
/** |
|
* Returns the index of the bin which contains a given value. |
|
*/ |
|
int BinIndex(ScalarType val) ; |
|
|
|
// public methods |
|
public: |
|
|
|
/** |
|
* Set the histogram values. |
|
* |
|
* This method is used to correctly initialize the bins of the histogram. |
|
* n is the number of valid intervals between minv and maxv. |
|
* for a more robust working, the Histogram class stores also the two out of range intervals (-inf, minv] and [maxv, +inf) |
|
* Each bin is left closed (eg it contains the value |
|
* The \a gamma parameter is applied to modify the distribution of the ranges of the bins. Default uniform distibution. |
|
* |
|
*/ |
|
void SetRange(ScalarType _minv, ScalarType _maxv, int _n,ScalarType gamma=1.0 ); |
|
|
|
ScalarType MinV() {return minv;} //! Minimum value of the range where the histogram is defined. |
|
ScalarType MaxV() {return maxv;} //! Maximum value of the range where the histogram is defined. |
|
ScalarType Sum() {return sum;} //! Total sum of inserted values. |
|
ScalarType Cnt() {return cnt;} |
|
|
|
ScalarType MinElem() {return minElem;} //! Minimum element that has been added to the histogram. It could be < or > than MinV;. |
|
ScalarType MaxElem() {return maxElem;} //! Maximum element that has been added to the histogram. It could be < or > than MinV;.. |
|
|
|
/** |
|
* Add a new value to the histogram. |
|
* |
|
* The statistics related to the histogram data (average, RMS, etc.) are |
|
* also updated. |
|
*/ |
|
void Add(ScalarType v, ScalarType increment=ScalarType(1.0)); |
|
|
|
ScalarType MaxCount() const; //! Max number of elements among all buckets (including the two infinity bounded buckets) |
|
ScalarType MaxCountInRange() const; //! Max number of elements among all buckets between MinV and MaxV. |
|
int BinNum() const {return n;} |
|
ScalarType BinCount(ScalarType v); |
|
ScalarType BinCountInd(int index) {return H[index];} |
|
ScalarType BinCount(ScalarType v, ScalarType width); |
|
ScalarType BinLowerBound(int index) {return R[index];} |
|
ScalarType BinUpperBound(int index) {return R[index+1];} |
|
ScalarType RangeCount(ScalarType rangeMin, ScalarType rangeMax); |
|
ScalarType BinWidth(ScalarType v); |
|
|
|
/** |
|
* Returns the value corresponding to a given percentile of the data. |
|
* |
|
* The percentile range between 0 and 1. |
|
*/ |
|
ScalarType Percentile(ScalarType frac) const; |
|
|
|
//! Returns the average of the data. |
|
ScalarType Avg(){ return sum/cnt;} |
|
|
|
//! Returns the Root Mean Square of the data. |
|
ScalarType RMS(){ return sqrt(rms/double(cnt));} |
|
|
|
//! Returns the variance of the data. |
|
ScalarType Variance(){ return fabs(rms/cnt-Avg()*Avg());} |
|
|
|
//! Returns the standard deviation of the data. |
|
ScalarType StandardDeviation(){ return sqrt(Variance());} |
|
|
|
//! Dump the histogram to a file. |
|
void FileWrite(const std::string &filename); |
|
|
|
//! Reset histogram data. |
|
void Clear(); |
|
}; |
|
|
|
template <class ScalarType> |
|
void Histogram<ScalarType>::Clear() |
|
{ |
|
H.clear(); |
|
R.clear(); |
|
cnt=0; |
|
sum=0; |
|
rms=0; |
|
n=0; |
|
minv=0; |
|
maxv=1; |
|
minElem = std::numeric_limits<ScalarType>::max(); |
|
maxElem = -std::numeric_limits<ScalarType>::max(); |
|
} |
|
|
|
/* |
|
Note that the histogram holds <n> valid bins plus two semi-infinite bins. |
|
|
|
R[0] = -inf |
|
R[1] = minv |
|
R[n+1] = maxv |
|
R[n+2] = +inf |
|
|
|
|
|
Eg. SetRange(0, 10, 5) asks for 5 intervals covering the 0..10 range |
|
|
|
H[0] H[1] H[2] H[3] H[4] H[5] H[6] |
|
-inf 0 2 4 6 8 10 +inf |
|
R[0] R[1] R[2] R[3] R[4] R[5] R[6] R[7] |
|
|
|
*/ |
|
|
|
template <class ScalarType> |
|
void Histogram<ScalarType>::SetRange(ScalarType _minv, ScalarType _maxv, int _n, ScalarType gamma) |
|
{ |
|
// reset data |
|
Clear(); |
|
|
|
minv=_minv;maxv=_maxv;n=_n; |
|
H.resize(n+2); |
|
fill(H.begin(),H.end(),0); |
|
R.resize(n+3); |
|
|
|
R[0] = - std::numeric_limits< ScalarType >::max(); |
|
R[n+2] = std::numeric_limits< ScalarType >::max(); |
|
|
|
double delta=(maxv-minv); |
|
if(gamma==1) |
|
{ |
|
for(int i=0; i<=n; ++i) |
|
R[i+1] = minv + delta*ScalarType(i)/n; |
|
} |
|
else |
|
{ |
|
for(int i=0; i<=n; ++i) |
|
R[i+1] = minv + delta*pow(ScalarType(i)/n,gamma); |
|
} |
|
} |
|
|
|
|
|
|
|
template <class ScalarType> |
|
int Histogram<ScalarType>::BinIndex(ScalarType val) |
|
{ |
|
// lower_bound returns the furthermost iterator i in [first, last) such that, for every iterator j in [first, i), *j < value. |
|
// E.g. An iterator pointing to the first element "not less than" val, or end() if every element is less than val. |
|
typename std::vector<ScalarType>::iterator it = lower_bound(R.begin(),R.end(),val); |
|
|
|
assert(it!=R.begin()); |
|
assert(it!=R.end()); |
|
assert((*it)>=val); |
|
|
|
int pos = it-R.begin(); |
|
assert(pos >=1); |
|
pos -= 1; |
|
assert (R[pos] < val); |
|
assert ( val <= R[pos+1] ); |
|
return pos; |
|
} |
|
|
|
/* |
|
H[0] H[1] H[2] H[3] H[4] H[5] H[6] |
|
-inf 0 2 4 6 8 10 +inf |
|
R[0] R[1] R[2] R[3] R[4] R[5] R[6] R[7] |
|
|
|
asking for 3.14 lower bound will return an iterator pointing to R[3]==4; and will increase H[2] |
|
asking for 4 lower bound will return an iterator pointing to R[3]==4; and will increase H[2] |
|
|
|
*/ |
|
template <class ScalarType> |
|
void Histogram<ScalarType>::Add(ScalarType v, ScalarType increment) |
|
{ |
|
int pos=BinIndex(v); |
|
if(v<minElem) minElem=v; |
|
if(v>maxElem) maxElem=v; |
|
assert((pos>=0)&&(pos<=n+1)); |
|
H[pos]+=increment; |
|
cnt+=increment; |
|
sum+=v*increment; |
|
rms += (v*v)*increment; |
|
} |
|
|
|
template <class ScalarType> |
|
ScalarType Histogram<ScalarType>::BinCount(ScalarType v) |
|
{ |
|
return H[BinIndex(v)]; |
|
} |
|
|
|
template <class ScalarType> |
|
ScalarType Histogram<ScalarType>::BinCount(ScalarType v, ScalarType width) |
|
{ |
|
return RangeCount(v-width/2.0,v+width/2.0); |
|
} |
|
|
|
template <class ScalarType> |
|
ScalarType Histogram<ScalarType>::RangeCount(ScalarType rangeMin, ScalarType rangeMax) |
|
{ |
|
int firstBin=BinIndex(rangeMin); |
|
int lastBin=BinIndex (rangeMax); |
|
ScalarType sum=0; |
|
for(int i=firstBin; i<=lastBin;++i) |
|
sum+=H[i]; |
|
return sum; |
|
} |
|
|
|
template <class ScalarType> |
|
ScalarType Histogram<ScalarType>::BinWidth(ScalarType v) |
|
{ |
|
int pos=BinIndex(v); |
|
return R[pos+1]-R[pos]; |
|
} |
|
|
|
template <class ScalarType> |
|
void Histogram<ScalarType>::FileWrite(const std::string &filename) |
|
{ |
|
FILE *fp; |
|
fp=fopen(filename.c_str(),"w"); |
|
|
|
for(unsigned int i=0; i<H.size(); i++) |
|
fprintf (fp,"%12.8lf , %12.8lf \n",R[i],double(H[i])/cnt); |
|
|
|
fclose(fp); |
|
} |
|
|
|
|
|
template <class ScalarType> |
|
ScalarType Histogram<ScalarType>::MaxCount() const |
|
{ |
|
return *(std::max_element(H.begin(),H.end())); |
|
} |
|
|
|
template <class ScalarType> |
|
ScalarType Histogram<ScalarType>::MaxCountInRange() const |
|
{ |
|
return *(std::max_element(H.begin()+1,H.end()-1)); |
|
} |
|
|
|
// Return the scalar value <r> such that there are <frac> samples <= <r>. |
|
// E.g. Percentile(0.0) will return R[1] e.g. min value |
|
// E.g. Percentile(1.0) will return R[n+1] e.g max value |
|
|
|
template <class ScalarType> |
|
ScalarType Histogram<ScalarType>::Percentile(ScalarType frac) const |
|
{ |
|
if(H.size()==0 && R.size()==0) |
|
return 0; |
|
|
|
// check percentile range |
|
assert(frac >= 0 && frac <= 1); |
|
|
|
ScalarType sum=0,partsum=0; |
|
size_t i; |
|
|
|
// useless summation just to be sure |
|
for(i=0;i<H.size();i++) sum+=H[i]; |
|
assert(sum==cnt); |
|
|
|
sum*=frac; |
|
for(i=0; i<H.size(); i++) |
|
{ |
|
partsum+=H[i]; |
|
if(partsum>=sum) break; |
|
} |
|
|
|
assert(i<H.size()); |
|
|
|
return R[i+1]; |
|
} |
|
|
|
typedef Histogram<double> Histogramd ; |
|
typedef Histogram<float> Histogramf ; |
|
|
|
} // end namespace (vcg) |
|
|
|
#endif /* __VCG_HISTOGRAM */
|
|
|