You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
302 lines
8.7 KiB
302 lines
8.7 KiB
/**************************************************************************** |
|
* VCGLib o o * |
|
* Visual and Computer Graphics Library o o * |
|
* _ O _ * |
|
* Copyright(C) 2004-2016 \/)\/ * |
|
* Visual Computing Lab /\/| * |
|
* ISTI - Italian National Research Council | * |
|
* \ * |
|
* All rights reserved. * |
|
* * |
|
* This program is free software; you can redistribute it and/or modify * |
|
* it under the terms of the GNU General Public License as published by * |
|
* the Free Software Foundation; either version 2 of the License, or * |
|
* (at your option) any later version. * |
|
* * |
|
* This program is distributed in the hope that it will be useful, * |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of * |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * |
|
* for more details. * |
|
* * |
|
****************************************************************************/ |
|
|
|
#ifndef _VCG_EDGE_TOPOLOGY |
|
#define _VCG_EDGE_TOPOLOGY |
|
|
|
#include <vector> |
|
#include <vcg/complex/allocate.h> |
|
|
|
#include "pos.h" |
|
#include "component.h" |
|
|
|
namespace vcg { |
|
namespace edge { |
|
/** \addtogroup edge */ |
|
/*@{*/ |
|
|
|
|
|
template <class EdgeType> |
|
inline bool IsEdgeManifold( EdgeType const & e, const int j ) |
|
{ |
|
return ( e.cEEp(j) == &e || &e == e.cEEp(j)->cEEp(e.cEEi(j)) ); |
|
} |
|
|
|
|
|
/** Return a boolean that indicate if the j-th edge of the face is a border. |
|
@param j Index of the edge |
|
@return true if j is an edge of border, false otherwise |
|
*/ |
|
template <class EdgeType> |
|
inline bool IsEdgeBorder(EdgeType const & e, const int j ) |
|
{ |
|
if(EdgeType::HasEEAdjacency()) |
|
return e.cEEp(j)==&e; |
|
|
|
assert(0); |
|
return true; |
|
} |
|
|
|
/** fill a vector with the star of a given vertex on an edge using the VE adjaency |
|
@param vp vertex pointer for which we compute the star |
|
@return starVec the vector of vertex pointers to be filled |
|
*/ |
|
template <class VertexType> |
|
void VVStarVE(const VertexType* vp, std::vector<VertexType *> &starVec) |
|
{ |
|
starVec.clear(); |
|
edge::VEIterator<typename VertexType::EdgeType> vei(vp); |
|
while(!vei.End()) |
|
{ |
|
starVec.push_back(vei.V1()); |
|
++vei; |
|
} |
|
} |
|
|
|
/** fill a vector with the star of a given vertex on an edge using the EE adjaency |
|
@param ep edge pointer for edge containing the vertex for which we compute the star |
|
@param ind the index of the vertex on the edge |
|
@return starVec the vector of vertex pointers to be filled |
|
*/ |
|
template <class VertexType> |
|
void VVStarEE(typename VertexType::EdgeType* ep, int ind, std::vector<VertexType *> &starVec) |
|
{ |
|
starVec.clear(); |
|
edge::Pos<typename VertexType::EdgeType> ePos(ep,ind); |
|
edge::Pos<typename VertexType::EdgeType> eStart=ePos; |
|
do |
|
{ |
|
starVec.push_back(ePos.VFlip()); |
|
ePos.NextE(); |
|
}while(ePos!=eStart); |
|
} |
|
|
|
template <class EdgeType> |
|
void VEStarVE(const typename EdgeType::VertexType* vp, std::vector<EdgeType *> &starVec) |
|
{ |
|
starVec.clear(); |
|
edge::VEIterator<EdgeType> vei(vp); |
|
while(!vei.End()) |
|
{ |
|
starVec.push_back(vei.E()); |
|
++vei; |
|
} |
|
} |
|
|
|
template <class EdgeType> |
|
void VEStarVE(const typename EdgeType::VertexType * vp, |
|
std::vector<EdgeType *> &starVec, |
|
std::vector<int> & indices) |
|
{ |
|
starVec.clear(); |
|
indices.clear(); |
|
starVec.reserve(16); |
|
indices.reserve(16); |
|
edge::VEIterator<EdgeType> vei(vp); |
|
while(!vei.End()) |
|
{ |
|
starVec.push_back(vei.E()); |
|
indices.push_back(vei.I()); |
|
++vei; |
|
} |
|
} |
|
|
|
/// Completely detach an edge from the VE adjacency. Useful before deleting it |
|
template <class EdgeType> |
|
void VEDetach(EdgeType & e) |
|
{ |
|
VEDetach(e,0); |
|
VEDetach(e,1); |
|
} |
|
|
|
/// It detaches the given edge e from the VE adjacency on the vertex z |
|
/// It is used for careful hand stictching of topologies. |
|
template <class EdgeType> |
|
void VEDetach(EdgeType & e, int z) |
|
{ |
|
typename EdgeType::VertexType *vz = e.V(z); // the vertex from which the edge must be detached. |
|
|
|
if(vz->VEp()==&e ) //if it is the first edge in the VE chain it detaches it from the begin |
|
{ |
|
assert(vz->VEi() == z); |
|
vz->VEp() = e.VEp(z); |
|
vz->VEi() = e.VEi(z); |
|
return; |
|
} |
|
else // scan the list of edges to find the current edge e to be detached |
|
{ |
|
for( VEIterator<EdgeType> vei(vz);!vei.End();++vei) |
|
{ |
|
if(vei.E()->VEp(vei.I()) == &e) |
|
{ |
|
vei.e->VEp(vei.z) = e.VEp(z); |
|
vei.e->VEi(vei.z) = e.VEi(z); |
|
return; |
|
} |
|
} |
|
assert(0); |
|
} |
|
} |
|
|
|
/// Append an edge in the VE list of vertex e->V(z) |
|
template <class EdgeType> |
|
void VEAppend(EdgeType* e, int z) |
|
{ |
|
typename EdgeType::VertexType *v = e->V(z); |
|
if (v->VEp()!=0) |
|
{ |
|
EdgeType *e0=v->VEp(); |
|
int z0=v->VEi(); |
|
//append |
|
e->VEp(z)=e0; |
|
e->VEi(z)=z0; |
|
} |
|
else |
|
{ |
|
e->VEp(z)=0; |
|
e->VEi(z)=-1; |
|
} |
|
v->VEp()=e; |
|
v->VEi()=z; |
|
} |
|
|
|
|
|
/*! Perform a simple edge collapse using VE adjacency |
|
* |
|
* It collapses the two edges incidnent on the indicated vertex so that the passed edge survives, |
|
* the indicated vertex is deleted, and the edge ajacent to e0 along z is deleted too. |
|
* It assumes that the edge mesh is 1-Manifold. |
|
* If the indicated vertex <vd> is boundary or non manifold the function do nothing. |
|
* |
|
* v0 vd v1 |
|
* ---O-------O-------O--- |
|
* z0 e0 z e1 z1 |
|
* |
|
* v0 v1 |
|
* ---O---------------O--- |
|
* e0 |
|
* |
|
* |
|
*/ |
|
template <class MeshType> |
|
void VEEdgeCollapse(MeshType &poly, typename MeshType::EdgeType *e0, const int z) |
|
{ |
|
typedef typename MeshType::EdgeType EdgeType; |
|
typedef typename MeshType::VertexType VertexType; |
|
|
|
VertexType *vd = e0->V(z); |
|
|
|
std::vector<EdgeType *> starVecEp; |
|
edge::VEStarVE(vd,starVecEp); |
|
if(starVecEp.size()!=2) return; |
|
|
|
EdgeType *e1=0; // this edge will be deleted |
|
if( starVecEp[0] == e0 ) e1 = starVecEp[1]; |
|
if( starVecEp[1] == e0 ) e1 = starVecEp[0]; |
|
assert(e1 && (e1!=e0) ); |
|
|
|
//int z0 = (z+1)%2; |
|
int z1 = -1; |
|
if(e1->V(0) == vd) z1=1; |
|
if(e1->V(1) == vd) z1=0; |
|
assert(z1!=-1); |
|
|
|
VertexType *v1 = e1->V(z1); |
|
assert(v1 != vd); |
|
|
|
edge::VEDetach(*e1); // detach the edge to be deleted. |
|
|
|
edge::VEDetach(*e0,z); // detach one side of the surviving edge |
|
e0->V(z) = v1; // change one extreme of the edge |
|
edge::VEAppend(e0, z); // attach it again. |
|
|
|
tri::Allocator<MeshType>::DeleteEdge(poly,*e1); |
|
tri::Allocator<MeshType>::DeleteVertex(poly,*vd); |
|
} |
|
|
|
template <class MeshType> |
|
void VEEdgeCollapse(MeshType &poly, typename MeshType::VertexType *v) |
|
{ |
|
VEEdgeCollapse(poly,v->VEp(),v->VEi()); |
|
} |
|
/*! Perform a simple edge split using VE adjacency |
|
* |
|
*/ |
|
template <class MeshType> |
|
void VEEdgeSplit(MeshType &poly, typename MeshType::EdgeType *e, typename MeshType::VertexType &v) |
|
{ |
|
typename MeshType::VertexPointer v1 = e->V(1); |
|
edge::VEDetach(*e,1); |
|
e->V(1) = &v; |
|
edge::VEAppend(e,1); |
|
typename tri::Allocator<MeshType>::template PointerUpdater<typename MeshType::EdgePointer> pu; |
|
typename MeshType::EdgeIterator ei = tri::Allocator<MeshType>::AddEdges(poly, 1, pu); |
|
pu.Update(e); |
|
ei->ImportData(*e); |
|
ei->V(0)=&v; |
|
ei->V(1)=v1; |
|
edge::VEAppend(&*ei,0); |
|
edge::VEAppend(&*ei,1); |
|
} |
|
|
|
template <class MeshType> |
|
typename MeshType::VertexPointer VEEdgeSplit(MeshType &poly, typename MeshType::EdgeType *e, const typename MeshType::CoordType &p) |
|
{ |
|
typename MeshType::VertexIterator vi = tri::Allocator<MeshType>::AddVertex(poly,p); |
|
VEEdgeSplit(poly,e,*vi); |
|
return &*vi; |
|
} |
|
|
|
template <class MeshType> |
|
typename MeshType::VertexPointer VEEdgeSplit(MeshType &poly, typename MeshType::EdgeType *e, const typename MeshType::CoordType &p, const typename MeshType::CoordType &n) |
|
{ |
|
typename MeshType::VertexIterator vi = tri::Allocator<MeshType>::AddVertex(poly,p,n); |
|
VEEdgeSplit(poly,e,*vi); |
|
return &*vi; |
|
} |
|
|
|
|
|
/*! Returns the number of incident edges over a vertex vp; Using the VE adjacency. |
|
* |
|
* It just follows the chain of incident edges of the VE adjacency. |
|
*/ |
|
|
|
template <class EdgeType> |
|
int VEDegree(const typename EdgeType::VertexType* vp) |
|
{ |
|
int cnt=0; |
|
edge::VEIterator<EdgeType> vei(vp); |
|
while(!vei.End()) |
|
{ |
|
++cnt; |
|
++vei; |
|
} |
|
return cnt; |
|
} |
|
|
|
|
|
} // end namespace edge |
|
} // end namespace vcg |
|
|
|
|
|
#endif
|
|
|