You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
294 lines
8.9 KiB
294 lines
8.9 KiB
// This file is part of Eigen, a lightweight C++ template library |
|
// for linear algebra. |
|
// |
|
// Copyright (C) 2015 Eugene Brevdo <ebrevdo@google.com> |
|
// Benoit Steiner <benoit.steiner.goog@gmail.com> |
|
// |
|
// This Source Code Form is subject to the terms of the Mozilla |
|
// Public License v. 2.0. If a copy of the MPL was not distributed |
|
// with this file, You can obtain one at the mozilla.org home page |
|
|
|
#include "main.h" |
|
|
|
#include <Eigen/CXX11/Tensor> |
|
|
|
using Eigen::Tensor; |
|
using Eigen::array; |
|
using Eigen::Tuple; |
|
|
|
template <int DataLayout> |
|
static void test_simple_index_tuples() |
|
{ |
|
Tensor<float, 4, DataLayout> tensor(2,3,5,7); |
|
tensor.setRandom(); |
|
tensor = (tensor + tensor.constant(0.5)).log(); |
|
|
|
Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7); |
|
index_tuples = tensor.index_tuples(); |
|
|
|
for (DenseIndex n = 0; n < 2*3*5*7; ++n) { |
|
const Tuple<DenseIndex, float>& v = index_tuples.coeff(n); |
|
VERIFY_IS_EQUAL(v.first, n); |
|
VERIFY_IS_EQUAL(v.second, tensor.coeff(n)); |
|
} |
|
} |
|
|
|
template <int DataLayout> |
|
static void test_index_tuples_dim() |
|
{ |
|
Tensor<float, 4, DataLayout> tensor(2,3,5,7); |
|
tensor.setRandom(); |
|
tensor = (tensor + tensor.constant(0.5)).log(); |
|
|
|
Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7); |
|
|
|
index_tuples = tensor.index_tuples(); |
|
|
|
for (Eigen::DenseIndex n = 0; n < tensor.size(); ++n) { |
|
const Tuple<DenseIndex, float>& v = index_tuples(n); //(i, j, k, l); |
|
VERIFY_IS_EQUAL(v.first, n); |
|
VERIFY_IS_EQUAL(v.second, tensor(n)); |
|
} |
|
} |
|
|
|
template <int DataLayout> |
|
static void test_argmax_tuple_reducer() |
|
{ |
|
Tensor<float, 4, DataLayout> tensor(2,3,5,7); |
|
tensor.setRandom(); |
|
tensor = (tensor + tensor.constant(0.5)).log(); |
|
|
|
Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7); |
|
index_tuples = tensor.index_tuples(); |
|
|
|
Tensor<Tuple<DenseIndex, float>, 0, DataLayout> reduced; |
|
DimensionList<DenseIndex, 4> dims; |
|
reduced = index_tuples.reduce( |
|
dims, internal::ArgMaxTupleReducer<Tuple<DenseIndex, float> >()); |
|
|
|
Tensor<float, 0, DataLayout> maxi = tensor.maximum(); |
|
|
|
VERIFY_IS_EQUAL(maxi(), reduced(0).second); |
|
|
|
array<DenseIndex, 3> reduce_dims; |
|
for (int d = 0; d < 3; ++d) reduce_dims[d] = d; |
|
Tensor<Tuple<DenseIndex, float>, 1, DataLayout> reduced_by_dims(7); |
|
reduced_by_dims = index_tuples.reduce( |
|
reduce_dims, internal::ArgMaxTupleReducer<Tuple<DenseIndex, float> >()); |
|
|
|
Tensor<float, 1, DataLayout> max_by_dims = tensor.maximum(reduce_dims); |
|
|
|
for (int l = 0; l < 7; ++l) { |
|
VERIFY_IS_EQUAL(max_by_dims(l), reduced_by_dims(l).second); |
|
} |
|
} |
|
|
|
template <int DataLayout> |
|
static void test_argmin_tuple_reducer() |
|
{ |
|
Tensor<float, 4, DataLayout> tensor(2,3,5,7); |
|
tensor.setRandom(); |
|
tensor = (tensor + tensor.constant(0.5)).log(); |
|
|
|
Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7); |
|
index_tuples = tensor.index_tuples(); |
|
|
|
Tensor<Tuple<DenseIndex, float>, 0, DataLayout> reduced; |
|
DimensionList<DenseIndex, 4> dims; |
|
reduced = index_tuples.reduce( |
|
dims, internal::ArgMinTupleReducer<Tuple<DenseIndex, float> >()); |
|
|
|
Tensor<float, 0, DataLayout> mini = tensor.minimum(); |
|
|
|
VERIFY_IS_EQUAL(mini(), reduced(0).second); |
|
|
|
array<DenseIndex, 3> reduce_dims; |
|
for (int d = 0; d < 3; ++d) reduce_dims[d] = d; |
|
Tensor<Tuple<DenseIndex, float>, 1, DataLayout> reduced_by_dims(7); |
|
reduced_by_dims = index_tuples.reduce( |
|
reduce_dims, internal::ArgMinTupleReducer<Tuple<DenseIndex, float> >()); |
|
|
|
Tensor<float, 1, DataLayout> min_by_dims = tensor.minimum(reduce_dims); |
|
|
|
for (int l = 0; l < 7; ++l) { |
|
VERIFY_IS_EQUAL(min_by_dims(l), reduced_by_dims(l).second); |
|
} |
|
} |
|
|
|
template <int DataLayout> |
|
static void test_simple_argmax() |
|
{ |
|
Tensor<float, 4, DataLayout> tensor(2,3,5,7); |
|
tensor.setRandom(); |
|
tensor = (tensor + tensor.constant(0.5)).log(); |
|
tensor(0,0,0,0) = 10.0; |
|
|
|
Tensor<DenseIndex, 0, DataLayout> tensor_argmax; |
|
|
|
tensor_argmax = tensor.argmax(); |
|
|
|
VERIFY_IS_EQUAL(tensor_argmax(0), 0); |
|
|
|
tensor(1,2,4,6) = 20.0; |
|
|
|
tensor_argmax = tensor.argmax(); |
|
|
|
VERIFY_IS_EQUAL(tensor_argmax(0), 2*3*5*7 - 1); |
|
} |
|
|
|
template <int DataLayout> |
|
static void test_simple_argmin() |
|
{ |
|
Tensor<float, 4, DataLayout> tensor(2,3,5,7); |
|
tensor.setRandom(); |
|
tensor = (tensor + tensor.constant(0.5)).log(); |
|
tensor(0,0,0,0) = -10.0; |
|
|
|
Tensor<DenseIndex, 0, DataLayout> tensor_argmin; |
|
|
|
tensor_argmin = tensor.argmin(); |
|
|
|
VERIFY_IS_EQUAL(tensor_argmin(0), 0); |
|
|
|
tensor(1,2,4,6) = -20.0; |
|
|
|
tensor_argmin = tensor.argmin(); |
|
|
|
VERIFY_IS_EQUAL(tensor_argmin(0), 2*3*5*7 - 1); |
|
} |
|
|
|
template <int DataLayout> |
|
static void test_argmax_dim() |
|
{ |
|
Tensor<float, 4, DataLayout> tensor(2,3,5,7); |
|
std::vector<int> dims {2, 3, 5, 7}; |
|
|
|
for (int dim = 0; dim < 4; ++dim) { |
|
tensor.setRandom(); |
|
tensor = (tensor + tensor.constant(0.5)).log(); |
|
|
|
Tensor<DenseIndex, 3, DataLayout> tensor_argmax; |
|
array<DenseIndex, 4> ix; |
|
for (int i = 0; i < 2; ++i) { |
|
for (int j = 0; j < 3; ++j) { |
|
for (int k = 0; k < 5; ++k) { |
|
for (int l = 0; l < 7; ++l) { |
|
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; |
|
if (ix[dim] != 0) continue; |
|
// suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0 |
|
tensor(ix) = 10.0; |
|
} |
|
} |
|
} |
|
} |
|
|
|
tensor_argmax = tensor.argmax(dim); |
|
|
|
VERIFY_IS_EQUAL(tensor_argmax.size(), |
|
ptrdiff_t(2*3*5*7 / tensor.dimension(dim))); |
|
for (ptrdiff_t n = 0; n < tensor_argmax.size(); ++n) { |
|
// Expect max to be in the first index of the reduced dimension |
|
VERIFY_IS_EQUAL(tensor_argmax.data()[n], 0); |
|
} |
|
|
|
for (int i = 0; i < 2; ++i) { |
|
for (int j = 0; j < 3; ++j) { |
|
for (int k = 0; k < 5; ++k) { |
|
for (int l = 0; l < 7; ++l) { |
|
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; |
|
if (ix[dim] != tensor.dimension(dim) - 1) continue; |
|
// suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0 |
|
tensor(ix) = 20.0; |
|
} |
|
} |
|
} |
|
} |
|
|
|
tensor_argmax = tensor.argmax(dim); |
|
|
|
VERIFY_IS_EQUAL(tensor_argmax.size(), |
|
ptrdiff_t(2*3*5*7 / tensor.dimension(dim))); |
|
for (ptrdiff_t n = 0; n < tensor_argmax.size(); ++n) { |
|
// Expect max to be in the last index of the reduced dimension |
|
VERIFY_IS_EQUAL(tensor_argmax.data()[n], tensor.dimension(dim) - 1); |
|
} |
|
} |
|
} |
|
|
|
template <int DataLayout> |
|
static void test_argmin_dim() |
|
{ |
|
Tensor<float, 4, DataLayout> tensor(2,3,5,7); |
|
std::vector<int> dims {2, 3, 5, 7}; |
|
|
|
for (int dim = 0; dim < 4; ++dim) { |
|
tensor.setRandom(); |
|
tensor = (tensor + tensor.constant(0.5)).log(); |
|
|
|
Tensor<DenseIndex, 3, DataLayout> tensor_argmin; |
|
array<DenseIndex, 4> ix; |
|
for (int i = 0; i < 2; ++i) { |
|
for (int j = 0; j < 3; ++j) { |
|
for (int k = 0; k < 5; ++k) { |
|
for (int l = 0; l < 7; ++l) { |
|
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; |
|
if (ix[dim] != 0) continue; |
|
// suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = -10.0 |
|
tensor(ix) = -10.0; |
|
} |
|
} |
|
} |
|
} |
|
|
|
tensor_argmin = tensor.argmin(dim); |
|
|
|
VERIFY_IS_EQUAL(tensor_argmin.size(), |
|
ptrdiff_t(2*3*5*7 / tensor.dimension(dim))); |
|
for (ptrdiff_t n = 0; n < tensor_argmin.size(); ++n) { |
|
// Expect min to be in the first index of the reduced dimension |
|
VERIFY_IS_EQUAL(tensor_argmin.data()[n], 0); |
|
} |
|
|
|
for (int i = 0; i < 2; ++i) { |
|
for (int j = 0; j < 3; ++j) { |
|
for (int k = 0; k < 5; ++k) { |
|
for (int l = 0; l < 7; ++l) { |
|
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; |
|
if (ix[dim] != tensor.dimension(dim) - 1) continue; |
|
// suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = -20.0 |
|
tensor(ix) = -20.0; |
|
} |
|
} |
|
} |
|
} |
|
|
|
tensor_argmin = tensor.argmin(dim); |
|
|
|
VERIFY_IS_EQUAL(tensor_argmin.size(), |
|
ptrdiff_t(2*3*5*7 / tensor.dimension(dim))); |
|
for (ptrdiff_t n = 0; n < tensor_argmin.size(); ++n) { |
|
// Expect min to be in the last index of the reduced dimension |
|
VERIFY_IS_EQUAL(tensor_argmin.data()[n], tensor.dimension(dim) - 1); |
|
} |
|
} |
|
} |
|
|
|
EIGEN_DECLARE_TEST(cxx11_tensor_argmax) |
|
{ |
|
CALL_SUBTEST(test_simple_index_tuples<RowMajor>()); |
|
CALL_SUBTEST(test_simple_index_tuples<ColMajor>()); |
|
CALL_SUBTEST(test_index_tuples_dim<RowMajor>()); |
|
CALL_SUBTEST(test_index_tuples_dim<ColMajor>()); |
|
CALL_SUBTEST(test_argmax_tuple_reducer<RowMajor>()); |
|
CALL_SUBTEST(test_argmax_tuple_reducer<ColMajor>()); |
|
CALL_SUBTEST(test_argmin_tuple_reducer<RowMajor>()); |
|
CALL_SUBTEST(test_argmin_tuple_reducer<ColMajor>()); |
|
CALL_SUBTEST(test_simple_argmax<RowMajor>()); |
|
CALL_SUBTEST(test_simple_argmax<ColMajor>()); |
|
CALL_SUBTEST(test_simple_argmin<RowMajor>()); |
|
CALL_SUBTEST(test_simple_argmin<ColMajor>()); |
|
CALL_SUBTEST(test_argmax_dim<RowMajor>()); |
|
CALL_SUBTEST(test_argmax_dim<ColMajor>()); |
|
CALL_SUBTEST(test_argmin_dim<RowMajor>()); |
|
CALL_SUBTEST(test_argmin_dim<ColMajor>()); |
|
}
|
|
|