You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
227 lines
7.3 KiB
227 lines
7.3 KiB
// This file is part of Eigen, a lightweight C++ template library |
|
// for linear algebra. |
|
// |
|
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
|
// |
|
// This Source Code Form is subject to the terms of the Mozilla |
|
// Public License v. 2.0. If a copy of the MPL was not distributed |
|
// with this file, You can obtain one at the mozilla.org home page |
|
|
|
#include "main.h" |
|
#include <unsupported/Eigen/MatrixFunctions> |
|
|
|
// Variant of VERIFY_IS_APPROX which uses absolute error instead of |
|
// relative error. |
|
#define VERIFY_IS_APPROX_ABS(a, b) VERIFY(test_isApprox_abs(a, b)) |
|
|
|
template<typename Type1, typename Type2> |
|
inline bool test_isApprox_abs(const Type1& a, const Type2& b) |
|
{ |
|
return ((a-b).array().abs() < test_precision<typename Type1::RealScalar>()).all(); |
|
} |
|
|
|
|
|
// Returns a matrix with eigenvalues clustered around 0, 1 and 2. |
|
template<typename MatrixType> |
|
MatrixType randomMatrixWithRealEivals(const Index size) |
|
{ |
|
typedef typename MatrixType::Scalar Scalar; |
|
typedef typename MatrixType::RealScalar RealScalar; |
|
MatrixType diag = MatrixType::Zero(size, size); |
|
for (Index i = 0; i < size; ++i) { |
|
diag(i, i) = Scalar(RealScalar(internal::random<int>(0,2))) |
|
+ internal::random<Scalar>() * Scalar(RealScalar(0.01)); |
|
} |
|
MatrixType A = MatrixType::Random(size, size); |
|
HouseholderQR<MatrixType> QRofA(A); |
|
return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); |
|
} |
|
|
|
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> |
|
struct randomMatrixWithImagEivals |
|
{ |
|
// Returns a matrix with eigenvalues clustered around 0 and +/- i. |
|
static MatrixType run(const Index size); |
|
}; |
|
|
|
// Partial specialization for real matrices |
|
template<typename MatrixType> |
|
struct randomMatrixWithImagEivals<MatrixType, 0> |
|
{ |
|
static MatrixType run(const Index size) |
|
{ |
|
typedef typename MatrixType::Scalar Scalar; |
|
MatrixType diag = MatrixType::Zero(size, size); |
|
Index i = 0; |
|
while (i < size) { |
|
Index randomInt = internal::random<Index>(-1, 1); |
|
if (randomInt == 0 || i == size-1) { |
|
diag(i, i) = internal::random<Scalar>() * Scalar(0.01); |
|
++i; |
|
} else { |
|
Scalar alpha = Scalar(randomInt) + internal::random<Scalar>() * Scalar(0.01); |
|
diag(i, i+1) = alpha; |
|
diag(i+1, i) = -alpha; |
|
i += 2; |
|
} |
|
} |
|
MatrixType A = MatrixType::Random(size, size); |
|
HouseholderQR<MatrixType> QRofA(A); |
|
return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); |
|
} |
|
}; |
|
|
|
// Partial specialization for complex matrices |
|
template<typename MatrixType> |
|
struct randomMatrixWithImagEivals<MatrixType, 1> |
|
{ |
|
static MatrixType run(const Index size) |
|
{ |
|
typedef typename MatrixType::Scalar Scalar; |
|
typedef typename MatrixType::RealScalar RealScalar; |
|
const Scalar imagUnit(0, 1); |
|
MatrixType diag = MatrixType::Zero(size, size); |
|
for (Index i = 0; i < size; ++i) { |
|
diag(i, i) = Scalar(RealScalar(internal::random<Index>(-1, 1))) * imagUnit |
|
+ internal::random<Scalar>() * Scalar(RealScalar(0.01)); |
|
} |
|
MatrixType A = MatrixType::Random(size, size); |
|
HouseholderQR<MatrixType> QRofA(A); |
|
return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); |
|
} |
|
}; |
|
|
|
|
|
template<typename MatrixType> |
|
void testMatrixExponential(const MatrixType& A) |
|
{ |
|
typedef typename internal::traits<MatrixType>::Scalar Scalar; |
|
typedef typename NumTraits<Scalar>::Real RealScalar; |
|
typedef std::complex<RealScalar> ComplexScalar; |
|
|
|
VERIFY_IS_APPROX(A.exp(), A.matrixFunction(internal::stem_function_exp<ComplexScalar>)); |
|
} |
|
|
|
template<typename MatrixType> |
|
void testMatrixLogarithm(const MatrixType& A) |
|
{ |
|
typedef typename internal::traits<MatrixType>::Scalar Scalar; |
|
typedef typename NumTraits<Scalar>::Real RealScalar; |
|
|
|
MatrixType scaledA; |
|
RealScalar maxImagPartOfSpectrum = A.eigenvalues().imag().cwiseAbs().maxCoeff(); |
|
if (maxImagPartOfSpectrum >= RealScalar(0.9L * EIGEN_PI)) |
|
scaledA = A * RealScalar(0.9L * EIGEN_PI) / maxImagPartOfSpectrum; |
|
else |
|
scaledA = A; |
|
|
|
// identity X.exp().log() = X only holds if Im(lambda) < pi for all eigenvalues of X |
|
MatrixType expA = scaledA.exp(); |
|
MatrixType logExpA = expA.log(); |
|
VERIFY_IS_APPROX(logExpA, scaledA); |
|
} |
|
|
|
template<typename MatrixType> |
|
void testHyperbolicFunctions(const MatrixType& A) |
|
{ |
|
// Need to use absolute error because of possible cancellation when |
|
// adding/subtracting expA and expmA. |
|
VERIFY_IS_APPROX_ABS(A.sinh(), (A.exp() - (-A).exp()) / 2); |
|
VERIFY_IS_APPROX_ABS(A.cosh(), (A.exp() + (-A).exp()) / 2); |
|
} |
|
|
|
template<typename MatrixType> |
|
void testGonioFunctions(const MatrixType& A) |
|
{ |
|
typedef typename MatrixType::Scalar Scalar; |
|
typedef typename NumTraits<Scalar>::Real RealScalar; |
|
typedef std::complex<RealScalar> ComplexScalar; |
|
typedef Matrix<ComplexScalar, MatrixType::RowsAtCompileTime, |
|
MatrixType::ColsAtCompileTime, MatrixType::Options> ComplexMatrix; |
|
|
|
ComplexScalar imagUnit(0,1); |
|
ComplexScalar two(2,0); |
|
|
|
ComplexMatrix Ac = A.template cast<ComplexScalar>(); |
|
|
|
ComplexMatrix exp_iA = (imagUnit * Ac).exp(); |
|
ComplexMatrix exp_miA = (-imagUnit * Ac).exp(); |
|
|
|
ComplexMatrix sinAc = A.sin().template cast<ComplexScalar>(); |
|
VERIFY_IS_APPROX_ABS(sinAc, (exp_iA - exp_miA) / (two*imagUnit)); |
|
|
|
ComplexMatrix cosAc = A.cos().template cast<ComplexScalar>(); |
|
VERIFY_IS_APPROX_ABS(cosAc, (exp_iA + exp_miA) / 2); |
|
} |
|
|
|
template<typename MatrixType> |
|
void testMatrix(const MatrixType& A) |
|
{ |
|
testMatrixExponential(A); |
|
testMatrixLogarithm(A); |
|
testHyperbolicFunctions(A); |
|
testGonioFunctions(A); |
|
} |
|
|
|
template<typename MatrixType> |
|
void testMatrixType(const MatrixType& m) |
|
{ |
|
// Matrices with clustered eigenvalue lead to different code paths |
|
// in MatrixFunction.h and are thus useful for testing. |
|
|
|
const Index size = m.rows(); |
|
for (int i = 0; i < g_repeat; i++) { |
|
testMatrix(MatrixType::Random(size, size).eval()); |
|
testMatrix(randomMatrixWithRealEivals<MatrixType>(size)); |
|
testMatrix(randomMatrixWithImagEivals<MatrixType>::run(size)); |
|
} |
|
} |
|
|
|
template<typename MatrixType> |
|
void testMapRef(const MatrixType& A) |
|
{ |
|
// Test if passing Ref and Map objects is possible |
|
// (Regression test for Bug #1796) |
|
Index size = A.rows(); |
|
MatrixType X; X.setRandom(size, size); |
|
MatrixType Y(size,size); |
|
Ref< MatrixType> R(Y); |
|
Ref<const MatrixType> Rc(X); |
|
Map< MatrixType> M(Y.data(), size, size); |
|
Map<const MatrixType> Mc(X.data(), size, size); |
|
|
|
X = X*X; // make sure sqrt is possible |
|
Y = X.sqrt(); |
|
R = Rc.sqrt(); |
|
M = Mc.sqrt(); |
|
Y = X.exp(); |
|
R = Rc.exp(); |
|
M = Mc.exp(); |
|
X = Y; // make sure log is possible |
|
Y = X.log(); |
|
R = Rc.log(); |
|
M = Mc.log(); |
|
|
|
Y = X.cos() + Rc.cos() + Mc.cos(); |
|
Y = X.sin() + Rc.sin() + Mc.sin(); |
|
|
|
Y = X.cosh() + Rc.cosh() + Mc.cosh(); |
|
Y = X.sinh() + Rc.sinh() + Mc.sinh(); |
|
} |
|
|
|
|
|
EIGEN_DECLARE_TEST(matrix_function) |
|
{ |
|
CALL_SUBTEST_1(testMatrixType(Matrix<float,1,1>())); |
|
CALL_SUBTEST_2(testMatrixType(Matrix3cf())); |
|
CALL_SUBTEST_3(testMatrixType(MatrixXf(8,8))); |
|
CALL_SUBTEST_4(testMatrixType(Matrix2d())); |
|
CALL_SUBTEST_5(testMatrixType(Matrix<double,5,5,RowMajor>())); |
|
CALL_SUBTEST_6(testMatrixType(Matrix4cd())); |
|
CALL_SUBTEST_7(testMatrixType(MatrixXd(13,13))); |
|
|
|
CALL_SUBTEST_1(testMapRef(Matrix<float,1,1>())); |
|
CALL_SUBTEST_2(testMapRef(Matrix3cf())); |
|
CALL_SUBTEST_3(testMapRef(MatrixXf(8,8))); |
|
CALL_SUBTEST_7(testMapRef(MatrixXd(13,13))); |
|
}
|
|
|