You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

190 lines
9.6 KiB

'''
OpenMVS python utilities.
E.g., from MvsUtils import loadDMAP, loadMVSInterface
'''
import numpy as np
def loadDMAP(dmap_path):
with open(dmap_path, 'rb') as dmap:
file_type = dmap.read(2).decode()
content_type = np.frombuffer(dmap.read(1), dtype=np.dtype('B'))
reserve = np.frombuffer(dmap.read(1), dtype=np.dtype('B'))
has_depth = content_type > 0
has_normal = content_type in [3, 7, 11, 15]
has_conf = content_type in [5, 7, 13, 15]
has_views = content_type in [9, 11, 13, 15]
image_width, image_height = np.frombuffer(dmap.read(8), dtype=np.dtype('I'))
depth_width, depth_height = np.frombuffer(dmap.read(8), dtype=np.dtype('I'))
if (file_type != 'DR' or has_depth == False or depth_width <= 0 or depth_height <= 0 or image_width < depth_width or image_height < depth_height):
print('error: opening file \'{}\' for reading depth-data'.format(dmap_path))
return
depth_min, depth_max = np.frombuffer(dmap.read(8), dtype=np.dtype('f'))
file_name_size = np.frombuffer(dmap.read(2), dtype=np.dtype('H'))[0]
file_name = dmap.read(file_name_size).decode()
view_ids_size = np.frombuffer(dmap.read(4), dtype=np.dtype('I'))[0]
reference_view_id, *neighbor_view_ids = np.frombuffer(dmap.read(4 * view_ids_size), dtype=np.dtype('I'))
K = np.frombuffer(dmap.read(72), dtype=np.dtype('d')).reshape(3, 3)
R = np.frombuffer(dmap.read(72), dtype=np.dtype('d')).reshape(3, 3)
C = np.frombuffer(dmap.read(24), dtype=np.dtype('d'))
data = {
'has_normal': has_normal,
'has_conf': has_conf,
'has_views': has_views,
'image_width': image_width,
'image_height': image_height,
'depth_width': depth_width,
'depth_height': depth_height,
'depth_min': depth_min,
'depth_max': depth_max,
'file_name': file_name,
'reference_view_id': reference_view_id,
'neighbor_view_ids': neighbor_view_ids,
'K': K,
'R': R,
'C': C
}
map_size = depth_width * depth_height
depth_map = np.frombuffer(dmap.read(4 * map_size), dtype=np.dtype('f')).reshape(depth_height, depth_width)
data.update({'depth_map': depth_map})
if has_normal:
normal_map = np.frombuffer(dmap.read(4 * map_size * 3), dtype=np.dtype('f')).reshape(depth_height, depth_width, 3)
data.update({'normal_map': normal_map})
if has_conf:
confidence_map = np.frombuffer(dmap.read(4 * map_size), dtype=np.dtype('f')).reshape(depth_height, depth_width)
data.update({'confidence_map': confidence_map})
if has_views:
views_map = np.frombuffer(dmap.read(map_size * 4), dtype=np.dtype('B')).reshape(depth_height, depth_width, 4)
data.update({'views_map': views_map})
return data
def loadMVSInterface(archive_path):
with open(archive_path, 'rb') as mvs:
archive_type = mvs.read(4).decode()
version = np.frombuffer(mvs.read(4), dtype=np.dtype('I')).tolist()[0]
reserve = np.frombuffer(mvs.read(4), dtype=np.dtype('I'))
if archive_type != 'MVSI':
print('error: opening file \'{}\''.format(archive_path))
return
data = {
'project_stream': archive_type,
'project_stream_version': version,
'platforms': [],
'images': [],
'vertices': [],
'vertices_normal': [],
'vertices_color': []
}
platforms_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0]
for platform_index in range(platforms_size):
platform_name_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0]
platform_name = mvs.read(platform_name_size).decode()
data['platforms'].append({'name': platform_name, 'cameras': []})
cameras_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0]
for camera_index in range(cameras_size):
camera_name_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0]
camera_name = mvs.read(camera_name_size).decode()
data['platforms'][platform_index]['cameras'].append({'name': camera_name})
if version > 3:
band_name_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0]
band_name = mvs.read(band_name_size).decode()
data['platforms'][platform_index]['cameras'][camera_index].update({'band_name': band_name})
if version > 0:
width, height = np.frombuffer(mvs.read(8), dtype=np.dtype('I')).tolist()
data['platforms'][platform_index]['cameras'][camera_index].update({'width': width, 'height': height})
K = np.asarray(np.frombuffer(mvs.read(72), dtype=np.dtype('d'))).reshape(3, 3).tolist()
data['platforms'][platform_index]['cameras'][camera_index].update({'K': K, 'poses': []})
identity_matrix = np.asarray(np.frombuffer(mvs.read(96), dtype=np.dtype('d'))).reshape(4, 3)
poses_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0]
for _ in range(poses_size):
R = np.asarray(np.frombuffer(mvs.read(72), dtype=np.dtype('d'))).reshape(3, 3).tolist()
C = np.asarray(np.frombuffer(mvs.read(24), dtype=np.dtype('d'))).tolist()
data['platforms'][platform_index]['cameras'][camera_index]['poses'].append({'R': R, 'C': C})
images_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0]
for image_index in range(images_size):
name_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0]
name = mvs.read(name_size).decode()
data['images'].append({'name': name})
if version > 4:
mask_name_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0]
mask_name = mvs.read(mask_name_size).decode()
data['images'][image_index].update({'mask_name': mask_name})
platform_id, camera_id, pose_id = np.frombuffer(mvs.read(12), dtype=np.dtype('I')).tolist()
data['images'][image_index].update({'platform_id': platform_id, 'camera_id': camera_id, 'pose_id': pose_id})
if version > 2:
id = np.frombuffer(mvs.read(4), dtype=np.dtype('I')).tolist()[0]
data['images'][image_index].update({'id': id})
if version > 6:
min_depth, avg_depth, max_depth = np.frombuffer(mvs.read(12), dtype=np.dtype('f')).tolist()
data['images'][image_index].update({'min_depth': min_depth, 'avg_depth': avg_depth, 'max_depth': max_depth, 'view_scores': []})
view_score_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0]
for _ in range(view_score_size):
id, points = np.frombuffer(mvs.read(8), dtype=np.dtype('I')).tolist()
scale, angle, area, score = np.frombuffer(mvs.read(16), dtype=np.dtype('f')).tolist()
data['images'][image_index]['view_scores'].append({'id': id, 'points': points, 'scale': scale, 'angle': angle, 'area': area, 'score': score})
vertices_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0]
for vertex_index in range(vertices_size):
X = np.frombuffer(mvs.read(12), dtype=np.dtype('f')).tolist()
data['vertices'].append({'X': X, 'views': []})
views_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0]
for _ in range(views_size):
image_id = np.frombuffer(mvs.read(4), dtype=np.dtype('I')).tolist()[0]
confidence = np.frombuffer(mvs.read(4), dtype=np.dtype('f')).tolist()[0]
data['vertices'][vertex_index]['views'].append({'image_id': image_id, 'confidence': confidence})
vertices_normal_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0]
for _ in range(vertices_normal_size):
normal = np.frombuffer(mvs.read(12), dtype=np.dtype('f')).tolist()
data['vertices_normal'].append(normal)
vertices_color_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0]
for _ in range(vertices_color_size):
color = np.frombuffer(mvs.read(3), dtype=np.dtype('B')).tolist()
data['vertices_color'].append(color)
if version > 0:
data.update({'lines': [], 'lines_normal': [], 'lines_color': []})
lines_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0]
for line_index in range(lines_size):
pt1 = np.frombuffer(mvs.read(12), dtype=np.dtype('f')).tolist()
pt2 = np.frombuffer(mvs.read(12), dtype=np.dtype('f')).tolist()
data['lines'].append({'pt1': pt1, 'pt2': pt2, 'views': []})
views_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0]
for _ in range(views_size):
image_id = np.frombuffer(mvs.read(4), dtype=np.dtype('I')).tolist()[0]
confidence = np.frombuffer(mvs.read(4), dtype=np.dtype('f')).tolist()[0]
data['lines'][line_index]['views'].append({'image_id': image_id, 'confidence': confidence})
lines_normal_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0]
for _ in range(lines_normal_size):
normal = np.frombuffer(mvs.read(12), dtype=np.dtype('f')).tolist()
data['lines_normal'].append(normal)
lines_color_size = np.frombuffer(mvs.read(8), dtype=np.dtype('Q'))[0]
for _ in range(lines_color_size):
color = np.frombuffer(mvs.read(3), dtype=np.dtype('B')).tolist()
data['lines_color'].append(color)
if version > 1:
transform = np.frombuffer(mvs.read(128), dtype=np.dtype('d')).reshape(4, 4).tolist()
data.update({'transform': transform})
if version > 5:
rot = np.frombuffer(mvs.read(72), dtype=np.dtype('d')).reshape(3, 3).tolist()
pt_min = np.frombuffer(mvs.read(24), dtype=np.dtype('d')).tolist()
pt_max = np.frombuffer(mvs.read(24), dtype=np.dtype('d')).tolist()
data.update({'obb': {'rot': rot, 'pt_min': pt_min, 'pt_max': pt_max}})
return data