You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
765 lines
27 KiB
765 lines
27 KiB
/**************************************************************************** |
|
* VCGLib o o * |
|
* Visual and Computer Graphics Library o o * |
|
* _ O _ * |
|
* Copyright(C) 2004-2016 \/)\/ * |
|
* Visual Computing Lab /\/| * |
|
* ISTI - Italian National Research Council | * |
|
* \ * |
|
* All rights reserved. * |
|
* * |
|
* This program is free software; you can redistribute it and/or modify * |
|
* it under the terms of the GNU General Public License as published by * |
|
* the Free Software Foundation; either version 2 of the License, or * |
|
* (at your option) any later version. * |
|
* * |
|
* This program is distributed in the hope that it will be useful, * |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of * |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * |
|
* for more details. * |
|
* * |
|
****************************************************************************/ |
|
|
|
#ifndef __VCGLIB_INTERSECTION_3 |
|
#define __VCGLIB_INTERSECTION_3 |
|
|
|
#include <vcg/math/base.h> |
|
#include <vcg/space/point3.h> |
|
#include <vcg/space/line3.h> |
|
#include <vcg/space/ray3.h> |
|
#include <vcg/space/plane3.h> |
|
#include <vcg/space/segment3.h> |
|
#include <vcg/space/sphere3.h> |
|
#include <vcg/space/triangle3.h> |
|
#include <vcg/space/intersection/triangle_triangle3.h> |
|
|
|
|
|
|
|
|
|
namespace vcg { |
|
/** \addtogroup space */ |
|
/*@{*/ |
|
/** |
|
Function computing the intersection between couple of geometric primitives in |
|
3 dimension |
|
*/ |
|
/// interseciton between sphere and line |
|
template<class T> |
|
inline bool IntersectionLineSphere( const Sphere3<T> & sp, const Line3<T> & li, Point3<T> & p0,Point3<T> & p1 ){ |
|
|
|
// Per prima cosa si sposta il sistema di riferimento |
|
// fino a portare il centro della sfera nell'origine |
|
Point3<T> neworig=li.Origin()-sp.Center(); |
|
// poi si risolve il sistema di secondo grado (con maple...) |
|
T t1 = li.Direction().X()*li.Direction().X(); |
|
T t2 = li.Direction().Y()*li.Direction().Y(); |
|
T t3 = li.Direction().Z()*li.Direction().Z(); |
|
T t6 = neworig.Y()*li.Direction().Y(); |
|
T t7 = neworig.X()*li.Direction().X(); |
|
T t8 = neworig.Z()*li.Direction().Z(); |
|
T t15 = sp.Radius()*sp.Radius(); |
|
T t17 = neworig.Z()*neworig.Z(); |
|
T t19 = neworig.Y()*neworig.Y(); |
|
T t21 = neworig.X()*neworig.X(); |
|
T t28 = T(2.0*t7*t6+2.0*t6*t8+2.0*t7*t8+t1*t15-t1*t17-t1*t19-t2*t21+t2*t15-t2*t17-t3*t21+t3*t15-t3*t19); |
|
if(t28<0) return false; |
|
T t29 = sqrt(t28); |
|
T val0 = 1/(t1+t2+t3)*(-t6-t7-t8+t29); |
|
T val1 = 1/(t1+t2+t3)*(-t6-t7-t8-t29); |
|
|
|
p0=li.P(val0); |
|
p1=li.P(val1); |
|
return true; |
|
} |
|
|
|
/* |
|
* Function computing the intersection between a sphere and a segment. |
|
* @param[in] sphere the sphere |
|
* @param[in] segment the segment |
|
* @param[out] intersection the intersection point, meaningful only if the segment intersects the sphere |
|
* \return (0, 1 or 2) the number of intersections between the segment and the sphere. |
|
* t1 is a valid intersection only if the returned value is at least 1; |
|
* similarly t2 is valid iff the returned value is 2. |
|
*/ |
|
template < class SCALAR_TYPE > |
|
inline int IntersectionSegmentSphere(const Sphere3<SCALAR_TYPE>& sphere, const Segment3<SCALAR_TYPE>& segment, Point3<SCALAR_TYPE> & t0, Point3<SCALAR_TYPE> & t1) |
|
{ |
|
typedef SCALAR_TYPE ScalarType; |
|
typedef typename vcg::Point3< ScalarType > Point3t; |
|
|
|
Point3t s = segment.P0() - sphere.Center(); |
|
Point3t r = segment.P1() - segment.P0(); |
|
|
|
ScalarType rho2 = sphere.Radius()*sphere.Radius(); |
|
|
|
ScalarType sr = s*r; |
|
ScalarType r_squared_norm = r.SquaredNorm(); |
|
ScalarType s_squared_norm = s.SquaredNorm(); |
|
ScalarType sigma = sr*sr - r_squared_norm*(s_squared_norm-rho2); |
|
|
|
if (sigma<ScalarType(0.0)) // the line containing the edge doesn't intersect the sphere |
|
return 0; |
|
|
|
ScalarType sqrt_sigma = ScalarType(sqrt( ScalarType(sigma) )); |
|
ScalarType lambda1 = (-sr - sqrt_sigma)/r_squared_norm; |
|
ScalarType lambda2 = (-sr + sqrt_sigma)/r_squared_norm; |
|
|
|
int solution_count = 0; |
|
if (ScalarType(0.0)<=lambda1 && lambda1<=ScalarType(1.0)) |
|
{ |
|
ScalarType t_enter = std::max< ScalarType >(lambda1, ScalarType(0.0)); |
|
t0 = segment.P0() + r*t_enter; |
|
solution_count++; |
|
} |
|
|
|
if (ScalarType(0.0)<=lambda2 && lambda2<=ScalarType(1.0)) |
|
{ |
|
Point3t *pt = (solution_count>0) ? &t1 : &t0; |
|
ScalarType t_exit = std::min< ScalarType >(lambda2, ScalarType(1.0)); |
|
*pt = segment.P0() + r*t_exit; |
|
solution_count++; |
|
} |
|
return solution_count; |
|
} // end of IntersectionSegmentSphere |
|
|
|
|
|
/*! |
|
* Compute the intersection between a sphere and a triangle. |
|
* \param[in] sphere the input sphere |
|
* \param[in] triangle the input triangle |
|
* \param[out] witness it is the point on the triangle nearest to the center of the sphere (even when there isn't intersection) |
|
* \param[out] res if not null, in the first item is stored the minimum distance between the triangle and the sphere, |
|
* while in the second item is stored the penetration depth |
|
* \return true iff there is an intersection between the sphere and the triangle |
|
*/ |
|
template < class SCALAR_TYPE, class TRIANGLETYPE > |
|
bool IntersectionSphereTriangle(const vcg::Sphere3 < SCALAR_TYPE > & sphere , |
|
TRIANGLETYPE triangle, |
|
vcg::Point3 < SCALAR_TYPE > & witness , |
|
std::pair< SCALAR_TYPE, SCALAR_TYPE > * res=NULL) |
|
{ |
|
typedef SCALAR_TYPE ScalarType; |
|
typedef typename vcg::Point3< ScalarType > Point3t; |
|
|
|
bool penetration_detected = false; |
|
|
|
ScalarType radius = sphere.Radius(); |
|
Point3t center = sphere.Center(); |
|
Point3t p0 = triangle.P(0)-center; |
|
Point3t p1 = triangle.P(1)-center; |
|
Point3t p2 = triangle.P(2)-center; |
|
|
|
Point3t p10 = p1-p0; |
|
Point3t p21 = p2-p1; |
|
Point3t p20 = p2-p0; |
|
|
|
ScalarType delta0_p01 = p10.dot(p1); |
|
ScalarType delta1_p01 = -p10.dot(p0); |
|
ScalarType delta0_p02 = p20.dot(p2); |
|
ScalarType delta2_p02 = -p20.dot(p0); |
|
ScalarType delta1_p12 = p21.dot(p2); |
|
ScalarType delta2_p12 = -p21.dot(p1); |
|
|
|
// the closest point can be one of the vertices of the triangle |
|
if (delta1_p01<=ScalarType(0.0) && delta2_p02<=ScalarType(0.0)) { witness = p0; } |
|
else if (delta0_p01<=ScalarType(0.0) && delta2_p12<=ScalarType(0.0)) { witness = p1; } |
|
else if (delta0_p02<=ScalarType(0.0) && delta1_p12<=ScalarType(0.0)) { witness = p2; } |
|
else |
|
{ |
|
ScalarType temp = p10.dot(p2); |
|
ScalarType delta0_p012 = delta0_p01*delta1_p12 + delta2_p12*temp; |
|
ScalarType delta1_p012 = delta1_p01*delta0_p02 - delta2_p02*temp; |
|
ScalarType delta2_p012 = delta2_p02*delta0_p01 - delta1_p01*(p20.dot(p1)); |
|
|
|
// otherwise, can be a point lying on same edge of the triangle |
|
if (delta0_p012<=ScalarType(0.0)) |
|
{ |
|
ScalarType denominator = delta1_p12+delta2_p12; |
|
ScalarType mu1 = delta1_p12/denominator; |
|
ScalarType mu2 = delta2_p12/denominator; |
|
witness = (p1*mu1 + p2*mu2); |
|
} |
|
else if (delta1_p012<=ScalarType(0.0)) |
|
{ |
|
ScalarType denominator = delta0_p02+delta2_p02; |
|
ScalarType mu0 = delta0_p02/denominator; |
|
ScalarType mu2 = delta2_p02/denominator; |
|
witness = (p0*mu0 + p2*mu2); |
|
} |
|
else if (delta2_p012<=ScalarType(0.0)) |
|
{ |
|
ScalarType denominator = delta0_p01+delta1_p01; |
|
ScalarType mu0 = delta0_p01/denominator; |
|
ScalarType mu1 = delta1_p01/denominator; |
|
witness = (p0*mu0 + p1*mu1); |
|
} |
|
else |
|
{ |
|
// or else can be an point internal to the triangle |
|
ScalarType denominator = delta0_p012 + delta1_p012 + delta2_p012; |
|
ScalarType lambda0 = delta0_p012/denominator; |
|
ScalarType lambda1 = delta1_p012/denominator; |
|
ScalarType lambda2 = delta2_p012/denominator; |
|
witness = p0*lambda0 + p1*lambda1 + p2*lambda2; |
|
} |
|
} |
|
|
|
if (res!=NULL) |
|
{ |
|
ScalarType witness_norm = witness.Norm(); |
|
res->first = std::max< ScalarType >( witness_norm-radius, ScalarType(0.0) ); |
|
res->second = std::max< ScalarType >( radius-witness_norm, ScalarType(0.0) ); |
|
} |
|
penetration_detected = (witness.SquaredNorm() <= (radius*radius)); |
|
witness += center; |
|
return penetration_detected; |
|
} //end of IntersectionSphereTriangle |
|
|
|
/// intersection between line and plane |
|
template<class T> |
|
inline bool IntersectionPlaneLine( const Plane3<T> & pl, const Line3<T> & li, Point3<T> & po){ |
|
const T epsilon = T(1e-8); |
|
|
|
T k = pl.Direction().dot(li.Direction()); // Compute 'k' factor |
|
if( (k > -epsilon) && (k < epsilon)) |
|
return false; |
|
T r = (pl.Offset() - pl.Direction().dot(li.Origin()))/k; // Compute ray distance |
|
po = li.Origin() + li.Direction()*r; |
|
return true; |
|
} |
|
/// intersection between line and plane |
|
template<class T> |
|
inline bool IntersectionLinePlane(const Line3<T> & li, const Plane3<T> & pl, Point3<T> & po){ |
|
|
|
return IntersectionPlaneLine(pl,li,po); |
|
} |
|
|
|
/// intersection between segment and plane |
|
template<class T> |
|
inline bool IntersectionPlaneSegment( const Plane3<T> & pl, const Segment3<T> & s, Point3<T> & p0){ |
|
T p1_proj = s.P1()*pl.Direction()-pl.Offset(); |
|
T p0_proj = s.P0()*pl.Direction()-pl.Offset(); |
|
if ( (p1_proj>0)-(p0_proj<0)) return false; |
|
|
|
if(p0_proj == p1_proj) return false; |
|
|
|
// check that we perform the computation in a way that is independent with v0 v1 swaps |
|
if(p0_proj < p1_proj) |
|
p0 = s.P0() + (s.P1()-s.P0()) * fabs(p0_proj/(p1_proj-p0_proj)); |
|
if(p0_proj > p1_proj) |
|
p0 = s.P1() + (s.P0()-s.P1()) * fabs(p1_proj/(p0_proj-p1_proj)); |
|
|
|
return true; |
|
} |
|
|
|
/// intersection between segment and plane |
|
template<class ScalarType> |
|
inline bool IntersectionPlaneSegmentEpsilon(const Plane3<ScalarType> & pl, |
|
const Segment3<ScalarType> & sg, |
|
Point3<ScalarType> & po, |
|
const ScalarType epsilon = ScalarType(1e-8)){ |
|
|
|
typedef ScalarType T; |
|
T k = pl.Direction().dot((sg.P1()-sg.P0())); |
|
if( (k > -epsilon) && (k < epsilon)) |
|
return false; |
|
T r = (pl.Offset() - pl.Direction().dot(sg.P0()))/k; // Compute ray distance |
|
if( (r<0) || (r > 1.0)) |
|
return false; |
|
po = sg.P0()*(1-r)+sg.P1() * r; |
|
return true; |
|
} |
|
|
|
/// intersection between plane and triangle |
|
// not optimal: uses plane-segment intersection (and the fact the two or none edges can be intersected) |
|
// its use is rather dangerous because it can return inconsistent stuff on degenerate cases. |
|
// added assert to underline this danger. |
|
template<typename TRIANGLETYPE> |
|
inline bool IntersectionPlaneTriangle( const Plane3<typename TRIANGLETYPE::ScalarType> & pl, |
|
const TRIANGLETYPE & tr, |
|
Segment3<typename TRIANGLETYPE::ScalarType> & sg) |
|
{ |
|
typedef typename TRIANGLETYPE::ScalarType T; |
|
if(IntersectionPlaneSegment(pl,Segment3<T>(tr.cP(0),tr.cP(1)),sg.P0())) |
|
{ |
|
if(IntersectionPlaneSegment(pl,Segment3<T>(tr.cP(2),tr.cP(0)),sg.P1())) |
|
{ |
|
std::swap(sg.P0(),sg.P1()); |
|
return true; |
|
} |
|
else |
|
{ |
|
if(IntersectionPlaneSegment(pl,Segment3<T>(tr.cP(1),tr.cP(2)),sg.P1())) |
|
return true; |
|
else assert(0); |
|
return true; |
|
} |
|
} |
|
else |
|
{ |
|
if(IntersectionPlaneSegment(pl,Segment3<T>(tr.cP(1),tr.cP(2)),sg.P0())) |
|
{ |
|
if(IntersectionPlaneSegment(pl,Segment3<T>(tr.cP(2),tr.cP(0)),sg.P1())) |
|
return true; |
|
assert(0); |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
/// intersection between two triangles |
|
template<typename TRIANGLETYPE> |
|
inline bool IntersectionTriangleTriangle(const TRIANGLETYPE & t0,const TRIANGLETYPE & t1){ |
|
return NoDivTriTriIsect(t0.cP(0),t0.cP(1),t0.cP(2), |
|
t1.cP(0),t1.cP(1),t1.cP(2)); |
|
} |
|
|
|
template<class T> |
|
inline bool IntersectionTriangleTriangle(Point3<T> V0,Point3<T> V1,Point3<T> V2, |
|
Point3<T> U0,Point3<T> U1,Point3<T> U2){ |
|
return NoDivTriTriIsect(V0,V1,V2,U0,U1,U2); |
|
} |
|
#if 0 |
|
template<class T> |
|
inline bool Intersection(Point3<T> V0,Point3<T> V1,Point3<T> V2, |
|
Point3<T> U0,Point3<T> U1,Point3<T> U2,int *coplanar, |
|
Point3<T> &isectpt1,Point3<T> &isectpt2){ |
|
|
|
return tri_tri_intersect_with_isectline(V0,V1,V2,U0,U1,U2, |
|
coplanar,isectpt1,isectpt2); |
|
} |
|
|
|
template<typename TRIANGLETYPE,typename SEGMENTTYPE > |
|
inline bool Intersection(const TRIANGLETYPE & t0,const TRIANGLETYPE & t1,bool &coplanar, |
|
SEGMENTTYPE & sg){ |
|
Point3<typename SEGMENTTYPE::PointType> ip0,ip1; |
|
return tri_tri_intersect_with_isectline(t0.P0(0),t0.P0(1),t0.P0(2), |
|
t1.P0(0),t1.P0(1),t1.P0(2), |
|
coplanar,sg.P0(),sg.P1() |
|
); |
|
} |
|
|
|
#endif |
|
|
|
/* |
|
* Function computing the intersection between a line and a triangle. |
|
* from: |
|
* Tomas Moller and Ben Trumbore, |
|
* ``Fast, Minimum Storage Ray-Triangle Intersection'', |
|
* journal of graphics tools, vol. 2, no. 1, pp. 21-28, 1997 |
|
* @param[in] line |
|
* @param[in] triangle vertices |
|
* @param[out]=(t,u,v) the intersection point, meaningful only if the line intersects the triangle |
|
* t is the line parameter and |
|
* (u,v) are the baricentric coords of the intersection point |
|
* |
|
* Line.Orig + t * Line.Dir = (1-u-v) * Vert0 + u * Vert1 +v * Vert2 |
|
* |
|
*/ |
|
|
|
template<class T> |
|
bool IntersectionLineTriangle( const Line3<T> & line, const Point3<T> & vert0, |
|
const Point3<T> & vert1, const Point3<T> & vert2, |
|
T & t ,T & u, T & v) |
|
{ |
|
#define EPSIL 0.000001 |
|
|
|
vcg::Point3<T> edge1, edge2, tvec, pvec, qvec; |
|
T det,inv_det; |
|
|
|
/* find vectors for two edges sharing vert0 */ |
|
edge1 = vert1 - vert0; |
|
edge2 = vert2 - vert0; |
|
|
|
/* begin calculating determinant - also used to calculate U parameter */ |
|
pvec = line.Direction() ^ edge2; |
|
|
|
/* if determinant is near zero, line lies in plane of triangle */ |
|
det = edge1 * pvec; |
|
|
|
/* calculate distance from vert0 to line origin */ |
|
tvec = line.Origin() - vert0; |
|
inv_det = 1.0 / det; |
|
|
|
qvec = tvec ^ edge1; |
|
|
|
if (det > EPSIL) |
|
{ |
|
u = tvec * pvec ; |
|
if ( u < 0.0 || u > det) |
|
return 0; |
|
|
|
/* calculate V parameter and test bounds */ |
|
v = line.Direction() * qvec; |
|
if ( v < 0.0 || u + v > det) |
|
return 0; |
|
|
|
} |
|
else if(det < -EPSIL) |
|
{ |
|
/* calculate U parameter and test bounds */ |
|
u = tvec * pvec ; |
|
if ( u > 0.0 || u < det) |
|
return 0; |
|
|
|
/* calculate V parameter and test bounds */ |
|
v = line.Direction() * qvec ; |
|
if ( v > 0.0 || u + v < det) |
|
return 0; |
|
} |
|
else return 0; /* line is parallell to the plane of the triangle */ |
|
|
|
t = edge2 * qvec * inv_det; |
|
( u) *= inv_det; |
|
( v) *= inv_det; |
|
|
|
return 1; |
|
} |
|
|
|
/** |
|
Computes the intersection between a Ray and a Triangle. Returns the hitDistance and the baricentric coordinates of the hit point. |
|
|
|
bar3 = (1 - bar1 - bar2) |
|
hitPoint = ray.origin + hitDistance * ray.direction = bar3 * vert0 + bar1 * vert1 + bar2 * vert2 |
|
*/ |
|
template<class ScalarType> |
|
bool IntersectionRayTriangle( |
|
const Ray3<ScalarType>& ray, |
|
const Point3<ScalarType>& vert0, |
|
const Point3<ScalarType>& vert1, |
|
const Point3<ScalarType>& vert2, |
|
ScalarType& hitDistance, |
|
ScalarType& bar1, |
|
ScalarType& bar2) |
|
{ |
|
Line3<ScalarType> line(ray.Origin(), ray.Direction()); |
|
ScalarType new_hitDistance = hitDistance, new_bar1 = bar1, new_bar2 = bar2; |
|
if ( IntersectionLineTriangle(line, vert0, vert1, vert2, new_hitDistance, new_bar1, new_bar2) ) { |
|
if (new_hitDistance < 0) return false; |
|
else { |
|
hitDistance = new_hitDistance; bar1 = new_bar1; bar2 = new_bar2; |
|
return true; |
|
} |
|
} else { |
|
return false; |
|
} |
|
} |
|
|
|
// line-box |
|
template<class T> |
|
bool IntersectionLineBox( const Box3<T> & box, const Line3<T> & r, Point3<T> & coord ) |
|
{ |
|
const int NUMDIM = 3; |
|
const int RIGHT = 0; |
|
const int LEFT = 1; |
|
const int MIDDLE = 2; |
|
|
|
int inside = 1; |
|
char quadrant[NUMDIM]; |
|
int i; |
|
int whichPlane; |
|
Point3<T> maxT,candidatePlane; |
|
|
|
// Find candidate planes; this loop can be avoided if |
|
// rays cast all from the eye(assume perpsective view) |
|
for (i=0; i<NUMDIM; i++) |
|
{ |
|
if(r.Origin()[i] < box.min[i]) |
|
{ |
|
quadrant[i] = LEFT; |
|
candidatePlane[i] = box.min[i]; |
|
inside = 0; |
|
} |
|
else if (r.Origin()[i] > box.max[i]) |
|
{ |
|
quadrant[i] = RIGHT; |
|
candidatePlane[i] = box.max[i]; |
|
inside = 0; |
|
} |
|
else |
|
{ |
|
quadrant[i] = MIDDLE; |
|
} |
|
} |
|
|
|
// Ray origin inside bounding box |
|
if(inside){ |
|
coord = r.Origin(); |
|
return true; |
|
} |
|
|
|
// Calculate T distances to candidate planes |
|
for (i = 0; i < NUMDIM; i++) |
|
{ |
|
if (quadrant[i] != MIDDLE && r.Direction()[i] !=0.) |
|
maxT[i] = (candidatePlane[i]-r.Origin()[i]) / r.Direction()[i]; |
|
else |
|
maxT[i] = -1.; |
|
} |
|
|
|
// Get largest of the maxT's for final choice of intersection |
|
whichPlane = 0; |
|
for (i = 1; i < NUMDIM; i++) |
|
if (maxT[whichPlane] < maxT[i]) |
|
whichPlane = i; |
|
|
|
// Check final candidate actually inside box |
|
if (maxT[whichPlane] < 0.) return false; |
|
for (i = 0; i < NUMDIM; i++) |
|
if (whichPlane != i) |
|
{ |
|
coord[i] = r.Origin()[i] + maxT[whichPlane] *r.Direction()[i]; |
|
if (coord[i] < box.min[i] || coord[i] > box.max[i]) |
|
return false; |
|
} |
|
else |
|
{ |
|
coord[i] = candidatePlane[i]; |
|
} |
|
return true; // ray hits box |
|
} |
|
|
|
// ray-box |
|
template<class T> |
|
bool IntersectionRayBox( const Box3<T> & box, const Ray3<T> & r, Point3<T> & coord ) |
|
{ |
|
Line3<T> l; |
|
l.SetOrigin(r.Origin()); |
|
l.SetDirection(r.Direction()); |
|
return(IntersectionLineBox<T>(box,l,coord)); |
|
} |
|
|
|
// segment-box return fist intersection found from p0 to p1 |
|
template<class ScalarType> |
|
bool IntersectionSegmentBox( const Box3<ScalarType> & box, |
|
const Segment3<ScalarType> & s, |
|
Point3<ScalarType> & coord ) |
|
{ |
|
//as first perform box-box intersection |
|
Box3<ScalarType> test; |
|
test.Add(s.P0()); |
|
test.Add(s.P1()); |
|
if (!test.Collide(box)) |
|
return false; |
|
else |
|
{ |
|
Line3<ScalarType> l; |
|
Point3<ScalarType> dir=s.P1()-s.P0(); |
|
dir.Normalize(); |
|
l.SetOrigin(s.P0()); |
|
l.SetDirection(dir); |
|
if(IntersectionLineBox<ScalarType>(box,l,coord)) |
|
return (test.IsIn(coord)); |
|
return false; |
|
} |
|
} |
|
|
|
// segment-box intersection , return number of intersections and intersection points |
|
template<class ScalarType> |
|
int IntersectionSegmentBox( const Box3<ScalarType> & box, |
|
const Segment3<ScalarType> & s, |
|
Point3<ScalarType> & coord0, |
|
Point3<ScalarType> & coord1 ) |
|
{ |
|
int num=0; |
|
Segment3<ScalarType> test= s; |
|
if (IntersectionSegmentBox(box,test,coord0 )) |
|
{ |
|
num++; |
|
Point3<ScalarType> swap=test.P0(); |
|
test.P0()=test.P1(); |
|
test.P1()=swap; |
|
if (IntersectionSegmentBox(box,test,coord1 )) |
|
num++; |
|
} |
|
return num; |
|
} |
|
|
|
/** |
|
* Compute the intersection between a segment and a triangle. |
|
* It relies on the lineTriangle Intersection |
|
* @param[in] segment |
|
* @param[in] triangle vertices |
|
* @param[out]=(t,u,v) the intersection point, meaningful only if the line of segment intersects the triangle |
|
* t is the baricentric coord of the point on the segment |
|
* (u,v) are the baricentric coords of the intersection point in the segment |
|
* |
|
*/ |
|
template<class ScalarType> |
|
bool IntersectionSegmentTriangle( const vcg::Segment3<ScalarType> & seg, |
|
const Point3<ScalarType> & vert0, |
|
const Point3<ScalarType> & vert1, const |
|
Point3<ScalarType> & vert2, |
|
ScalarType & a ,ScalarType & b) |
|
{ |
|
//control intersection of bounding boxes |
|
vcg::Box3<ScalarType> bb0,bb1; |
|
bb0.Add(seg.P0()); |
|
bb0.Add(seg.P1()); |
|
bb1.Add(vert0); |
|
bb1.Add(vert1); |
|
bb1.Add(vert2); |
|
Point3<ScalarType> inter; |
|
if (!bb0.Collide(bb1)) |
|
return false; |
|
if (!vcg::IntersectionSegmentBox(bb1,seg,inter)) |
|
return false; |
|
|
|
//first set both directions of ray |
|
vcg::Line3<ScalarType> line; |
|
vcg::Point3<ScalarType> dir; |
|
ScalarType length=seg.Length(); |
|
dir=(seg.P1()-seg.P0()); |
|
dir.Normalize(); |
|
line.Set(seg.P0(),dir); |
|
ScalarType orig_dist; |
|
if(IntersectionLineTriangle<ScalarType>(line,vert0,vert1,vert2,orig_dist,a,b)) |
|
return (orig_dist>=0 && orig_dist<=length); |
|
return false; |
|
} |
|
/** |
|
* Compute the intersection between a segment and a triangle. |
|
* Wrapper of the above function |
|
*/ |
|
template<class TriangleType> |
|
bool IntersectionSegmentTriangle( const vcg::Segment3<typename TriangleType::ScalarType> & seg, |
|
const TriangleType &t, |
|
typename TriangleType::ScalarType & a ,typename TriangleType::ScalarType & b) |
|
{ |
|
return IntersectionSegmentTriangle(seg,t.cP(0),t.cP(1),t.cP(2),a,b); |
|
} |
|
|
|
template<class ScalarType> |
|
bool IntersectionPlaneBox(const vcg::Plane3<ScalarType> &pl, |
|
vcg::Box3<ScalarType> &bbox) |
|
{ |
|
ScalarType dist,dist1; |
|
if(bbox.IsNull()) return false; // intersection with a null bbox is empty |
|
dist = SignedDistancePlanePoint(pl,bbox.P(0)) ; |
|
for (int i=1;i<8;i++) if( SignedDistancePlanePoint(pl,bbox.P(i))*dist<0) return true; |
|
return true; |
|
} |
|
|
|
template<class ScalarType> |
|
bool IntersectionTriangleBox(const vcg::Box3<ScalarType> &bbox, |
|
const vcg::Point3<ScalarType> &p0, |
|
const vcg::Point3<ScalarType> &p1, |
|
const vcg::Point3<ScalarType> &p2) |
|
{ |
|
typedef typename vcg::Point3<ScalarType> CoordType; |
|
CoordType intersection; |
|
/// control bounding box collision |
|
vcg::Box3<ScalarType> test; |
|
test.SetNull(); |
|
test.Add(p0); |
|
test.Add(p1); |
|
test.Add(p2); |
|
if (!test.Collide(bbox)) |
|
return false; |
|
/// control if each point is inside the bouding box |
|
if ((bbox.IsIn(p0))||(bbox.IsIn(p1))||(bbox.IsIn(p2))) |
|
return true; |
|
|
|
/////control plane of the triangle with bbox |
|
//vcg::Plane3<ScalarType> plTri=vcg::Plane3<ScalarType>(); |
|
//plTri.Init(p0,p1,p2); |
|
//if (!IntersectionPlaneBox<ScalarType>(plTri,bbox)) |
|
// return false; |
|
|
|
///then control intersection of segments with box |
|
if (IntersectionSegmentBox<ScalarType>(bbox,vcg::Segment3<ScalarType>(p0,p1),intersection)|| |
|
IntersectionSegmentBox<ScalarType>(bbox,vcg::Segment3<ScalarType>(p1,p2),intersection)|| |
|
IntersectionSegmentBox<ScalarType>(bbox,vcg::Segment3<ScalarType>(p2,p0),intersection)) |
|
return true; |
|
///control intersection of diagonal of the cube with triangle |
|
|
|
Segment3<ScalarType> diag[4]; |
|
|
|
diag[0]=Segment3<ScalarType>(bbox.P(0),bbox.P(7)); |
|
diag[1]=Segment3<ScalarType>(bbox.P(1),bbox.P(6)); |
|
diag[2]=Segment3<ScalarType>(bbox.P(2),bbox.P(5)); |
|
diag[3]=Segment3<ScalarType>(bbox.P(3),bbox.P(4)); |
|
ScalarType a,b; |
|
for (int i=0;i<3;i++) |
|
if (IntersectionSegmentTriangle<ScalarType>(diag[i],p0,p1,p2,a,b)) |
|
return true; |
|
|
|
return false; |
|
} |
|
|
|
template <class SphereType> |
|
bool IntersectionSphereSphere( const SphereType & s0,const SphereType & s1){ |
|
return (s0.Center()-s1.Center()).SquaredNorm() < (s0.Radius()+s1.Radius())*(s0.Radius()+s1.Radius()); |
|
} |
|
|
|
template<class T> |
|
bool IntersectionPlanePlane (const Plane3<T> & plane0, const Plane3<T> & plane1, |
|
Line3<T> & line) |
|
{ |
|
// If Cross(N0,N1) is zero, then either planes are parallel and separated |
|
// or the same plane. In both cases, 'false' is returned. Otherwise, |
|
// the intersection line is |
|
// |
|
// L(t) = t*Cross(N0,N1) + c0*N0 + c1*N1 |
|
// |
|
// for some coefficients c0 and c1 and for t any real number (the line |
|
// parameter). Taking dot products with the normals, |
|
// |
|
// d0 = Dot(N0,L) = c0*Dot(N0,N0) + c1*Dot(N0,N1) |
|
// d1 = Dot(N1,L) = c0*Dot(N0,N1) + c1*Dot(N1,N1) |
|
// |
|
// which are two equations in two unknowns. The solution is |
|
// |
|
// c0 = (Dot(N1,N1)*d0 - Dot(N0,N1)*d1)/det |
|
// c1 = (Dot(N0,N0)*d1 - Dot(N0,N1)*d0)/det |
|
// |
|
// where det = Dot(N0,N0)*Dot(N1,N1)-Dot(N0,N1)^2. |
|
|
|
T n00 = plane0.Direction()*plane0.Direction(); |
|
T n01 = plane0.Direction()*plane1.Direction(); |
|
T n11 = plane1.Direction()*plane1.Direction(); |
|
T det = n00*n11-n01*n01; |
|
|
|
const T tolerance = (T)(1e-06f); |
|
if ( math::Abs(det) < tolerance ) |
|
return false; |
|
|
|
T invDet = 1.0f/det; |
|
T c0 = (n11*plane0.Offset() - n01*plane1.Offset())*invDet; |
|
T c1 = (n00*plane1.Offset() - n01*plane0.Offset())*invDet; |
|
|
|
line.SetDirection(plane0.Direction()^plane1.Direction()); |
|
line.SetOrigin(plane0.Direction()*c0+ plane1.Direction()*c1); |
|
|
|
return true; |
|
} |
|
|
|
|
|
// Ray-Triangle Functor |
|
template <bool BACKFACETEST = true> |
|
class RayTriangleIntersectionFunctor { |
|
public: |
|
template <class TRIANGLETYPE, class SCALARTYPE> |
|
inline bool operator () (const TRIANGLETYPE & f, const Ray3<SCALARTYPE> & ray, SCALARTYPE & t) { |
|
typedef SCALARTYPE ScalarType; |
|
ScalarType u; |
|
ScalarType v; |
|
|
|
bool bret = IntersectionRayTriangle(ray, Point3<SCALARTYPE>::Construct(f.cP(0)), Point3<SCALARTYPE>::Construct(f.cP(1)), Point3<SCALARTYPE>::Construct(f.cP(2)), t, u, v); |
|
if (BACKFACETEST) { |
|
if (!bret) { |
|
bret = IntersectionRayTriangle(ray, Point3<SCALARTYPE>::Construct(f.cP(0)), Point3<SCALARTYPE>::Construct(f.cP(2)), Point3<SCALARTYPE>::Construct(f.cP(1)), t, u, v); |
|
} |
|
} |
|
return (bret); |
|
} |
|
}; |
|
|
|
|
|
/*@}*/ |
|
|
|
|
|
} // end namespace |
|
#endif
|
|
|