You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
275 lines
9.9 KiB
275 lines
9.9 KiB
/**************************************************************************** |
|
* VCGLib o o * |
|
* Visual and Computer Graphics Library o o * |
|
* _ O _ * |
|
* Copyright(C) 2004-2016 \/)\/ * |
|
* Visual Computing Lab /\/| * |
|
* ISTI - Italian National Research Council | * |
|
* \ * |
|
* All rights reserved. * |
|
* * |
|
* This program is free software; you can redistribute it and/or modify * |
|
* it under the terms of the GNU General Public License as published by * |
|
* the Free Software Foundation; either version 2 of the License, or * |
|
* (at your option) any later version. * |
|
* * |
|
* This program is distributed in the hope that it will be useful, * |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of * |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * |
|
* for more details. * |
|
* * |
|
****************************************************************************/ |
|
#ifndef VORONOI_ATLAS_H |
|
#define VORONOI_ATLAS_H |
|
|
|
#include<vcg/complex/algorithms/parametrization/poisson_solver.h> |
|
#include<vcg/complex/algorithms/parametrization/uv_utils.h> |
|
#include<vcg/complex/algorithms/parametrization/distortion.h> |
|
#include<vcg/space/outline2_packer.h> |
|
#include<vcg/space/rasterized_outline2_packer.h> |
|
#include<vcg/complex/algorithms/update/texture.h> |
|
#include<vcg/complex/algorithms/point_sampling.h> |
|
#include<vcg/complex/algorithms/voronoi_processing.h> |
|
|
|
//#include<wrap/qt/outline2_rasterizer.h> |
|
|
|
namespace vcg { |
|
namespace tri { |
|
|
|
template <class MeshType> |
|
class VoronoiAtlas |
|
{ |
|
//private: |
|
public: |
|
class VoroEdge; |
|
class VoroFace; |
|
class VoroVertex; |
|
struct VoroUsedTypes : public UsedTypes< Use<VoroVertex> ::template AsVertexType, |
|
Use<VoroEdge> ::template AsEdgeType, |
|
Use<VoroFace> ::template AsFaceType>{}; |
|
|
|
class VoroVertex : public Vertex< VoroUsedTypes, vertex::Coord3f, vertex::Normal3f, vertex::TexCoord2f, vertex::VFAdj , vertex::Qualityf, vertex::Color4b, vertex::BitFlags >{}; |
|
class VoroFace : public Face< VoroUsedTypes, face::VertexRef, face::BitFlags, face::FFAdj ,face::VFAdj , face::CurvatureDirf,face::WedgeTexCoord2f> {}; |
|
class VoroEdge : public Edge< VoroUsedTypes>{}; |
|
class VoroMesh : public tri::TriMesh< std::vector<VoroVertex>, std::vector<VoroFace> , std::vector<VoroEdge> > {}; |
|
|
|
typedef typename VoroMesh::FaceIterator FaceIterator; |
|
typedef typename VoroMesh::VertexType VertexType; |
|
typedef typename VoroMesh::FaceType FaceType; |
|
|
|
static void CollectUVBorder(VoroMesh *rm, std::vector<Point2f> &uvBorder) |
|
{ |
|
tri::UpdateTopology<VoroMesh>::FaceFace(*rm); |
|
tri::UpdateFlags<VoroMesh>::FaceClearV(*rm); |
|
for(FaceIterator fi=rm->face.begin();fi!=rm->face.end();++fi) |
|
{ |
|
for(int j=0;j<3;++j) |
|
if(face::IsBorder(*fi,j) && !(fi->IsV())) |
|
{ |
|
face::Pos<FaceType> pp(&*fi,j,fi->V(j)); |
|
assert(pp.IsBorder()); |
|
face::Pos<FaceType> startPos = pp; |
|
do |
|
{ |
|
uvBorder.push_back( pp.F()->WT(pp.VInd()).P() ); |
|
pp.F()->SetV(); |
|
pp.NextB(); |
|
} while(pp != startPos); |
|
} |
|
} |
|
} |
|
|
|
// take a mesh and rescale its uv so that they are in the 0..1 range |
|
static void RegularizeTexArea(VoroMesh &m) |
|
{ |
|
float areaTex=0; |
|
float areaGeo=0; |
|
|
|
vcg::Box2f UVBox = tri::UV_Utils<VoroMesh>::PerWedgeUVBox(m); |
|
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) |
|
{ |
|
areaTex+= fabs((fi->WT(1).P() - fi->WT(0).P()) ^ (fi->WT(2).P() - fi->WT(0).P())) ; |
|
areaGeo+= DoubleArea(*fi); |
|
} |
|
|
|
float ratio = sqrt(areaGeo/areaTex); |
|
|
|
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) |
|
{ |
|
for(int j=0;j<3;++j) |
|
fi->WT(j).P() = (fi->WT(j).P()-UVBox.min) *ratio; |
|
} |
|
} |
|
|
|
|
|
public: |
|
struct VoronoiAtlasParam |
|
{ |
|
VoronoiAtlasParam() |
|
{ |
|
maxIterNum = 5; |
|
sampleNum=10; |
|
overlap=false; |
|
} |
|
|
|
struct Stat |
|
{ |
|
void clear() { iterNum=totalTime=unwrapTime=voronoiTime=samplingTime=0;} |
|
int totalTime; |
|
int unwrapTime; |
|
int voronoiTime; |
|
int samplingTime; |
|
|
|
int regionNum; |
|
int iterNum; |
|
}; |
|
|
|
int sampleNum; |
|
bool overlap; |
|
Stat vas; |
|
int maxIterNum; |
|
CallBackPos *cb=vcg::CErrCallBackPos; |
|
}; |
|
|
|
// Main parametrization function: |
|
// it takes a startMesh, copy it and |
|
|
|
static void Build( MeshType &startMesh, MeshType ¶Mesh, VoronoiAtlasParam &pp) |
|
{ |
|
pp.vas.clear(); |
|
int t0=clock(); |
|
VoroMesh m; // the mesh used for the processing is a copy of the passed one. |
|
tri::Append<VoroMesh, MeshType>::Mesh(m, startMesh); |
|
tri::Clean<VoroMesh>::RemoveUnreferencedVertex(m); |
|
tri::Allocator<VoroMesh>::CompactVertexVector(m); |
|
tri::Allocator<VoroMesh>::CompactFaceVector(m); |
|
|
|
tri::UpdateBounding<VoroMesh>::Box(m); |
|
std::vector<VoroMesh *> meshRegionVec; |
|
std::vector< std::vector<Point2f> > uvBorders; |
|
|
|
// Main processing loop |
|
do |
|
{ |
|
// qDebug("************ ITERATION %i sampling mesh of %i with %i ************",pp.vas.iterNum,m.fn,pp.sampleNum); |
|
int st0=clock(); |
|
std::vector<Point3f> PoissonSamples; |
|
float diskRadius=0; |
|
tri::PoissonSampling(m,PoissonSamples,pp.sampleNum,diskRadius); |
|
int st1=clock(); |
|
pp.vas.samplingTime+= st1-st0; |
|
pp.cb(50,StrFormat("Sampling created a new mesh of %lu points\n",PoissonSamples.size())); |
|
EuclideanDistance<VoroMesh> edFunc; |
|
std::vector<VertexType *> seedVec; |
|
tri::VoronoiProcessing<VoroMesh>::SeedToVertexConversion(m,PoissonSamples,seedVec); |
|
tri::UpdateTopology<VoroMesh>::VertexFace(m); |
|
tri::VoronoiProcessing<VoroMesh>::ComputePerVertexSources(m,seedVec,edFunc); |
|
tri::VoronoiProcessing<VoroMesh>::FaceAssociateRegion(m); |
|
tri::VoronoiProcessing<VoroMesh>::VoronoiColoring(m,true); |
|
std::vector<VoroMesh *> badRegionVec; |
|
int st2=clock(); |
|
pp.vas.voronoiTime+=st2-st1; |
|
for(size_t i=0; i<seedVec.size();++i) |
|
{ |
|
VoroMesh *rm = new VoroMesh(); |
|
int selCnt = tri::VoronoiProcessing<VoroMesh>::FaceSelectAssociateRegion(m,seedVec[i]); |
|
pp.cb(50,StrFormat("Region %i of %i faces",i,selCnt)); |
|
if(selCnt==0) continue; |
|
assert(selCnt>0); |
|
if(pp.overlap){ |
|
tri::UpdateSelection<VoroMesh>::VertexFromFaceLoose(m); |
|
tri::UpdateSelection<VoroMesh>::FaceFromVertexLoose(m); |
|
} |
|
tri::Append<VoroMesh,VoroMesh>::Mesh(*rm, m, true); |
|
int tp0=clock(); |
|
tri::PoissonSolver<VoroMesh> PS(*rm); |
|
tri::UpdateBounding<VoroMesh>::Box(*rm); |
|
if(PS.IsFeasible()) |
|
{ |
|
PS.Init(); |
|
PS.FixDefaultVertices(); |
|
PS.SolvePoisson(false); |
|
tri::UpdateTexture<VoroMesh>::WedgeTexFromVertexTex(*rm); |
|
RegularizeTexArea(*rm); |
|
|
|
std::vector<Point2f> uvBorder; |
|
CollectUVBorder(rm,uvBorder); |
|
meshRegionVec.push_back(rm); |
|
uvBorders.push_back(uvBorder); |
|
int foldedCnt = tri::Distortion<VoroMesh,false>::FoldedNum(*rm); |
|
if( foldedCnt > rm->fn/10) |
|
{ |
|
badRegionVec.push_back(rm); |
|
// qDebug("-- region %i Parametrized but with %i fold on %i!",i,foldedCnt,rm->fn); |
|
} |
|
// else qDebug("-- region %i Parametrized!",i); |
|
|
|
} else |
|
{ |
|
// qDebug("-- region %i is NOT homeomorphic to a disk\n",i); |
|
badRegionVec.push_back(rm); |
|
} |
|
int tp1=clock(); |
|
pp.vas.unwrapTime +=tp1-tp0; |
|
++pp.vas.iterNum; |
|
} |
|
// qDebug("\n -- Completed (%i bad regions) -- \n", badRegionVec.size()); |
|
VoroMesh *rm = new VoroMesh(); |
|
tri::VoronoiProcessing<VoroMesh>::FaceSelectAssociateRegion(m,0); |
|
tri::Append<VoroMesh,VoroMesh>::Mesh(*rm, m, true); |
|
|
|
if(rm->fn>0) |
|
{ |
|
// qDebug("ACH - unreached faces %i fn\n",rm->fn); |
|
badRegionVec.push_back(rm); |
|
} |
|
m.Clear(); |
|
pp.sampleNum = 10; |
|
if(!badRegionVec.empty()) |
|
{ |
|
for(size_t i=0;i<badRegionVec.size();++i) |
|
if(badRegionVec[i]->fn>50) |
|
tri::Append<VoroMesh,VoroMesh>::Mesh(m, *badRegionVec[i], false); |
|
|
|
tri::Clean<VoroMesh>::RemoveDuplicateFace(m); |
|
tri::Clean<VoroMesh>::RemoveUnreferencedVertex(m); |
|
tri::Allocator<VoroMesh>::CompactVertexVector(m); |
|
tri::Allocator<VoroMesh>::CompactFaceVector(m); |
|
} |
|
} while (m.fn>0); |
|
|
|
std::vector<Similarity2f> trVec; |
|
Point2f finalSize; |
|
//PolyPacker<float>::WritePolyVec(uvBorders,"borders.poly"); |
|
PolyPacker<float>::PackAsObjectOrientedRect(uvBorders,Point2i(1024,1024),trVec,finalSize); |
|
// RasterizedOutline2Packer<float,QtOutline2Rasterizer>::Parameters prp; |
|
// RasterizedOutline2Packer<float,QtOutline2Rasterizer>::Pack(uvBorders,Point2i(1024,1024),trVec,prp); |
|
// loop again over all the patches |
|
pp.vas.regionNum=meshRegionVec.size(); |
|
for(size_t i=0; i<meshRegionVec.size();++i) |
|
{ |
|
VoroMesh *rm = meshRegionVec[i]; |
|
for(FaceIterator fi=rm->face.begin();fi!=rm->face.end();++fi) |
|
{ |
|
for(int j=0;j<3;++j) |
|
{ |
|
Point2f pp(fi->WT(j).U(),fi->WT(j).V()); |
|
Point2f newpp=trVec[i]*pp; |
|
fi->WT(j).U()=newpp[0]/1024.0f; |
|
fi->WT(j).V()=newpp[1]/1024.0f; |
|
} |
|
} |
|
tri::Append<MeshType,VoroMesh>::Mesh(paraMesh, *rm, false); |
|
} |
|
int t2=clock(); |
|
pp.vas.totalTime=t2-t0; |
|
} |
|
}; //end |
|
|
|
|
|
} // end namespace vcg |
|
} // end namespace tri |
|
|
|
|
|
#endif // VORONOI_ATLAS_H
|
|
|