You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

756 lines
28 KiB

////////////////////////////////////////////////////////////////////////////
// File: util.h
// Author: Changchang Wu (ccwu@cs.washington.edu)
// Description : some utility functions for reading/writing SfM data
//
// Copyright (c) 2011 Changchang Wu (ccwu@cs.washington.edu)
// and the University of Washington at Seattle
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation; either
// Version 3 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
////////////////////////////////////////////////////////////////////////////////
#include <iostream>
#include <fstream>
#include <vector>
#include <string>
#include <math.h>
#include <time.h>
#include <iomanip>
#include <algorithm>
#include "DataInterface.h"
namespace PBA {
//File loader supports .nvm format and bundler format
bool LoadModelFile(const char* name, std::vector<CameraT>& camera_data, std::vector<Point3D>& point_data,
std::vector<Point2D>& measurements, std::vector<int>& ptidx, std::vector<int>& camidx,
std::vector<std::string>& names, std::vector<int>& ptc);
void SaveNVM(const char* filename, std::vector<CameraT>& camera_data, std::vector<Point3D>& point_data,
std::vector<Point2D>& measurements, std::vector<int>& ptidx, std::vector<int>& camidx,
std::vector<std::string>& names, std::vector<int>& ptc);
void SaveBundlerModel(const char* filename, std::vector<CameraT>& camera_data, std::vector<Point3D>& point_data,
std::vector<Point2D>& measurements, std::vector<int>& ptidx, std::vector<int>& camidx);
//////////////////////////////////////////////////////////////////
void AddNoise(std::vector<CameraT>& camera_data, std::vector<Point3D>& point_data, float percent);
void AddStableNoise(std::vector<CameraT>& camera_data, std::vector<Point3D>& point_data,
const std::vector<int>& ptidx, const std::vector<int>& camidx, float percent);
bool RemoveInvisiblePoints( std::vector<CameraT>& camera_data, std::vector<Point3D>& point_data,
std::vector<int>& ptidx, std::vector<int>& camidx,
std::vector<Point2D>& measurements, std::vector<std::string>& names, std::vector<int>& ptc);
/////////////////////////////////////////////////////////////////////////////
bool LoadNVM(std::ifstream& in, std::vector<CameraT>& camera_data, std::vector<Point3D>& point_data,
std::vector<Point2D>& measurements, std::vector<int>& ptidx, std::vector<int>& camidx,
std::vector<std::string>& names, std::vector<int>& ptc)
{
int rotation_parameter_num = 4;
bool format_r9t = false;
std::string token;
if(in.peek() == 'N')
{
in >> token; //file header
if(strstr(token.c_str(), "R9T"))
{
rotation_parameter_num = 9; //rotation as 3x3 matrix
format_r9t = true;
}
}
double fxFixed, fyFixed, cxFixed, cyFixed, k1(0);
int ncam = 0, npoint = 0, nproj = 0;
in >> token;
if (token == "FixedK") {
// read fixed intrinsics
std::getline(in, token);
sscanf(token.c_str(), "%lf %lf %lf %lf %lf", &fxFixed, &cxFixed, &fyFixed, &cyFixed, &k1);
// read # of cameras
in >> ncam;
} else {
// read # of cameras
ncam = atoi(token.c_str());
}
if(ncam <= 1) return false;
//read the camera parameters
camera_data.resize(ncam); // allocate the camera data
names.resize(ncam);
for(int i = 0; i < ncam; ++i)
{
double f, q[9], c[3], d[2];
in >> token >> f ;
for(int j = 0; j < rotation_parameter_num; ++j) in >> q[j];
in >> c[0] >> c[1] >> c[2] >> d[0] >> d[1];
camera_data[i].SetFocalLength(f);
if(format_r9t)
{
camera_data[i].SetMatrixRotation(q);
camera_data[i].SetTranslation(c);
}
else
{
//older format for compatibility
camera_data[i].SetQuaternionRotation(q); //quaternion from the file
camera_data[i].SetCameraCenterAfterRotation(c); //camera center from the file
}
camera_data[i].SetNormalizedMeasurementDistortion(k1!=0 ? k1 : d[0]);
names[i] = token;
}
//////////////////////////////////////
in >> npoint; if(npoint <= 0) return false;
//read image projections and 3D points.
point_data.resize(npoint);
for(int i = 0; i < npoint; ++i)
{
float pt[3]; int cc[3], npj;
in >> pt[0] >> pt[1] >> pt[2]
>> cc[0] >> cc[1] >> cc[2] >> npj;
for(int j = 0; j < npj; ++j)
{
int cidx, fidx; float imx, imy;
in >> cidx >> fidx >> imx >> imy;
camidx.push_back(cidx); //camera index
ptidx.push_back(i); //point index
//add a measurement to the vector
measurements.push_back(Point2D(imx, imy));
nproj ++;
}
point_data[i].SetPoint(pt);
ptc.insert(ptc.end(), cc, cc + 3);
}
///////////////////////////////////////////////////////////////////////////////
LOG_OUT() << ncam << " cameras; " << npoint << " 3D points; " << nproj << " projections\n";
return true;
}
void SaveNVM(const char* filename, std::vector<CameraT>& camera_data, std::vector<Point3D>& point_data,
std::vector<Point2D>& measurements, std::vector<int>& ptidx, std::vector<int>& camidx,
std::vector<std::string>& names, std::vector<int>& ptc)
{
LOG_OUT() << "Saving model to " << filename << "...\n";
std::ofstream out(filename);
out << "NVM_V3_R9T\n" << camera_data.size() << '\n' << std::setprecision(12);
if(names.size() < camera_data.size()) names.resize(camera_data.size(),std::string("unknown"));
if(ptc.size() < 3 * point_data.size()) ptc.resize(point_data.size() * 3, 0);
////////////////////////////////////
for(size_t i = 0; i < camera_data.size(); ++i)
{
CameraT& cam = camera_data[i];
out << names[i] << ' ' << cam.GetFocalLength() << ' ';
for(int j = 0; j < 9; ++j) out << cam.m[0][j] << ' ';
out << cam.t[0] << ' ' << cam.t[1] << ' ' << cam.t[2] << ' '
<< cam.GetNormalizedMeasurementDistortion() << " 0\n";
}
out << point_data.size() << '\n';
for(size_t i = 0, j = 0; i < point_data.size(); ++i)
{
Point3D& pt = point_data[i];
int * pc = &ptc[i * 3];
out << pt.xyz[0] << ' ' << pt.xyz[1] << ' ' << pt.xyz[2] << ' '
<< pc[0] << ' ' << pc[1] << ' ' << pc[2] << ' ';
size_t je = j;
while(je < ptidx.size() && ptidx[je] == (int) i) je++;
out << (je - j) << ' ';
for(; j < je; ++j) out << camidx[j] << ' ' << " 0 " << measurements[j].x << ' ' << measurements[j].y << ' ';
out << '\n';
}
}
bool LoadBundlerOut(const char* name, std::ifstream& in, std::vector<CameraT>& camera_data, std::vector<Point3D>& point_data,
std::vector<Point2D>& measurements, std::vector<int>& ptidx, std::vector<int>& camidx,
std::vector<std::string>& names, std::vector<int>& ptc)
{
int rotation_parameter_num = 9;
std::string token;
while(in.peek() == '#') std::getline(in, token);
char listpath[1024], filepath[1024];
strcpy(listpath, name);
char* ext = strstr(listpath, ".out");
strcpy(ext, "-list.txt\0");
///////////////////////////////////
std::ifstream listin(listpath);
if(!listin.is_open())
{
listin.close(); listin.clear();
strcpy(ext, ".txt\0");
listin.open(listpath);
}
if(!listin.is_open())
{
listin.close(); listin.clear();
char * slash = strrchr(listpath, '/');
if(slash == NULL) slash = strrchr(listpath, '\\');
slash = slash ? slash + 1 : listpath;
strcpy(slash, "image_list.txt");
listin.open(listpath);
}
if(listin) LOG_OUT() << "Using image list: " << listpath << '\n';
// read # of cameras
int ncam = 0, npoint = 0, nproj = 0;
in >> ncam >> npoint;
if(ncam <= 1 || npoint <= 1) return false;
LOG_OUT() << ncam << " cameras; " << npoint << " 3D points;\n";
//read the camera parameters
camera_data.resize(ncam); // allocate the camera data
names.resize(ncam);
bool det_checked = false;
for(int i = 0; i < ncam; ++i)
{
float f, q[9], c[3], d[2];
in >> f >> d[0] >> d[1];
for(int j = 0; j < rotation_parameter_num; ++j) in >> q[j];
in >> c[0] >> c[1] >> c[2];
camera_data[i].SetFocalLength(f);
camera_data[i].SetInvertedR9T(q, c);
camera_data[i].SetProjectionDistortion(d[0]);
if(listin >> filepath && f != 0)
{
names[i] = filepath;
std::getline(listin, token);
if(!det_checked)
{
float det = camera_data[i].GetRotationMatrixDeterminant();
LOG_OUT() << "Check rotation matrix: " << det << '\n';
det_checked = true;
}
}else
{
names[i] = "unknown";
}
}
//read image projections and 3D points.
point_data.resize(npoint);
for(int i = 0; i < npoint; ++i)
{
float pt[3]; int cc[3], npj;
in >> pt[0] >> pt[1] >> pt[2]
>> cc[0] >> cc[1] >> cc[2] >> npj;
for(int j = 0; j < npj; ++j)
{
int cidx, fidx; float imx, imy;
in >> cidx >> fidx >> imx >> imy;
camidx.push_back(cidx); //camera index
ptidx.push_back(i); //point index
//add a measurement to the vector
measurements.push_back(Point2D(imx, -imy));
nproj ++;
}
point_data[i].SetPoint(pt[0], pt[1], pt[2]);
ptc.insert(ptc.end(), cc, cc + 3);
}
///////////////////////////////////////////////////////////////////////////////
LOG_OUT() << ncam << " cameras; " << npoint << " 3D points; " << nproj << " projections\n";
return true;
}
void SaveBundlerOut(const char* filename, std::vector<CameraT>& camera_data, std::vector<Point3D>& point_data,
std::vector<Point2D>& measurements, std::vector<int>& ptidx, std::vector<int>& camidx,
std::vector<std::string>& names, std::vector<int>& ptc)
{
char listpath[1024]; strcpy(listpath, filename);
char* ext = strstr(listpath, ".out"); if(ext == NULL) return;
strcpy(ext, "-list.txt\0");
std::ofstream out(filename);
out << "# Bundle file v0.3\n";
out << std::setprecision(12); //need enough precision
out << camera_data.size() << " " << point_data.size() << '\n';
//save camera data
for(size_t i = 0; i < camera_data.size(); ++i)
{
float q[9], c[3];
CameraT& ci = camera_data[i];
out << ci.GetFocalLength() << ' ' << ci.GetProjectionDistortion() << " 0\n";
ci.GetInvertedR9T(q, c);
for(int j = 0; j < 9; ++j) out << q[j] << (((j % 3) == 2)? '\n' : ' ');
out << c[0] << ' ' << c[1] << ' ' << c[2] << '\n';
}
///
for(size_t i = 0, j = 0; i < point_data.size(); ++i)
{
int npj = 0, *ci = &ptc[i * 3]; Point3D& pt = point_data[i];
while(j + npj < point_data.size() && ptidx[j + npj] == ptidx[j]) npj++;
///////////////////////////
out << pt.xyz[0] << ' ' << pt.xyz[1] << ' ' << pt.xyz[2] << '\n';
out << ci[0] << ' ' << ci[1] << ' ' << ci[2] << '\n';
out << npj << ' ';
for(int k = 0; k < npj; ++k) out << camidx[j + k] << " 0 "
<< measurements[j + k].x << ' ' << -measurements[j + k].y << '\n';
out << '\n'; j += npj;
}
std::ofstream listout(listpath);
for(size_t i = 0; i < names.size(); ++i) listout << names[i] << '\n';
}
template<class CameraT, class Point3D>
bool LoadBundlerModel(std::ifstream& in, std::vector<CameraT>& camera_data, std::vector<Point3D>& point_data,
std::vector<Point2D>& measurements, std::vector<int>& ptidx, std::vector<int>& camidx)
{
// read bundle data from a file
size_t ncam = 0, npt = 0, nproj = 0;
if(!(in >> ncam >> npt >> nproj)) return false;
///////////////////////////////////////////////////////////////////////////////
LOG_OUT() << ncam << " cameras; " << npt << " 3D points; " << nproj << " projections\n";
camera_data.resize(ncam);
point_data.resize(npt);
measurements.resize(nproj);
camidx.resize(nproj);
ptidx.resize(nproj);
for(size_t i = 0; i < nproj; ++i)
{
double x, y; int cidx, pidx;
in >> cidx >> pidx >> x >> y;
if(((size_t) pidx) == npt && camidx.size() > i)
{
camidx.resize(i);
ptidx.resize(i);
measurements.resize(i);
LOG_OUT() << "Truncate measurements to " << i << '\n';
}else if(((size_t) pidx) >= npt)
{
continue;
}else
{
camidx[i] = cidx; ptidx[i] = pidx;
measurements[i].SetPoint2D(x, -y);
}
}
for(size_t i = 0; i < ncam; ++i)
{
double p[9];
for(int j = 0; j < 9; ++j) in >> p[j];
CameraT& cam = camera_data[i];
cam.SetFocalLength(p[6]);
cam.SetInvertedRT(p, p + 3);
cam.SetProjectionDistortion(p[7]);
}
for(size_t i = 0; i < npt; ++i)
{
double pt[3];
in >> pt[0] >> pt[1] >> pt[2];
point_data[i].SetPoint(pt);
}
return true;
}
void SaveBundlerModel(const char* filename, std::vector<CameraT>& camera_data, std::vector<Point3D>& point_data,
std::vector<Point2D>& measurements, std::vector<int>& ptidx, std::vector<int>& camidx)
{
LOG_OUT() << "Saving model to " << filename << "...\n";
std::ofstream out(filename);
out << std::setprecision(12); //need enough precision
out << camera_data.size() << ' ' << point_data.size() << ' ' << measurements.size() << '\n';
for(size_t i = 0; i < measurements.size(); ++i)
{
out << camidx[i] << ' ' << ptidx[i] << ' ' << measurements[i].x << ' ' << -measurements[i].y << '\n';
}
for(size_t i = 0; i < camera_data.size(); ++i)
{
CameraT& cam = camera_data[i];
double r[3], t[3]; cam.GetInvertedRT(r, t);
out << r[0] << ' ' << r[1] << ' ' << r[2] << ' '
<< t[0] << ' ' << t[1] << ' ' << t[2] << ' ' << cam.f
<< ' ' << cam.GetProjectionDistortion() << " 0\n";
}
for(size_t i = 0; i < point_data.size(); ++i)
{
Point3D& pt = point_data[i];
out << pt.xyz[0] << ' ' << pt.xyz[1] << ' ' << pt.xyz[2] << '\n';
}
}
bool LoadModelFile(const char* name, std::vector<CameraT>& camera_data, std::vector<Point3D>& point_data,
std::vector<Point2D>& measurements, std::vector<int>& ptidx, std::vector<int>& camidx,
std::vector<std::string>& names, std::vector<int>& ptc)
{
if(name == NULL)return false;
std::ifstream in(name);
LOG_OUT() << "Loading cameras/points: " << name <<"\n" ;
if(!in.is_open()) return false;
if(strstr(name, ".nvm"))return LoadNVM(in, camera_data, point_data, measurements, ptidx, camidx, names, ptc);
else if(strstr(name, ".out")) return LoadBundlerOut(name, in, camera_data, point_data, measurements, ptidx, camidx, names, ptc);
else return LoadBundlerModel(in, camera_data, point_data, measurements, ptidx, camidx);
}
float random_ratio(float percent)
{
return (rand() % 101 - 50) * 0.02f * percent + 1.0f;
}
void AddNoise(std::vector<CameraT>& camera_data, std::vector<Point3D>& point_data, float percent)
{
std::srand((unsigned int) time(NULL));
for(size_t i = 0; i < camera_data.size(); ++i)
{
camera_data[i].f *= random_ratio(percent);
camera_data[i].t[0] *= random_ratio(percent);
camera_data[i].t[1] *= random_ratio(percent);
camera_data[i].t[2] *= random_ratio(percent);
double e[3];
camera_data[i].GetRodriguesRotation(e);
e[0] *= random_ratio(percent);
e[1] *= random_ratio(percent);
e[2] *= random_ratio(percent);
camera_data[i].SetRodriguesRotation(e);
}
for(size_t i = 0; i < point_data.size(); ++i)
{
point_data[i].xyz[0] *= random_ratio(percent);
point_data[i].xyz[1] *= random_ratio(percent);
point_data[i].xyz[2] *= random_ratio(percent);
}
}
void AddStableNoise(std::vector<CameraT>& camera_data, std::vector<Point3D>& point_data,
const std::vector<int>& ptidx, const std::vector<int>& camidx, float percent)
{
///
std::srand((unsigned int) time(NULL));
//do not modify the visibility status..
std::vector<float> zz0(ptidx.size());
std::vector<CameraT> backup = camera_data;
std::vector<float> vx(point_data.size()), vy(point_data.size()), vz(point_data.size());
for(size_t i = 0; i < point_data.size(); ++i)
{
Point3D& pt = point_data[i];
vx[i] = pt.xyz[0];
vy[i] = pt.xyz[1];
vz[i] = pt.xyz[2];
}
//find out the median location of all the 3D points.
size_t median_idx = point_data.size() / 2;
std::nth_element(vx.begin(), vx.begin() + median_idx, vx.end());
std::nth_element(vy.begin(), vy.begin() + median_idx, vy.end());
std::nth_element(vz.begin(), vz.begin() + median_idx, vz.end());
float cx = vx[median_idx], cy = vy[median_idx], cz = vz[median_idx];
for(size_t i = 0; i < ptidx.size(); ++i)
{
CameraT& cam = camera_data[camidx[i]];
Point3D& pt = point_data[ptidx[i]];
zz0[i] = cam.m[2][0] * pt.xyz[0] + cam.m[2][1] * pt.xyz[1] + cam.m[2][2] * pt.xyz[2] + cam.t[2];
}
std::vector<float> z2 = zz0; median_idx = ptidx.size() / 2;
std::nth_element(z2.begin(), z2.begin() + median_idx, z2.end());
float mz = z2[median_idx]; // median depth
float dist_noise_base = mz * 0.2f;
/////////////////////////////////////////////////
//modify points first..
for(size_t i = 0; i < point_data.size(); ++i)
{
Point3D& pt = point_data[i];
pt.xyz[0] = pt.xyz[0] - cx + dist_noise_base * random_ratio(percent);
pt.xyz[1] = pt.xyz[1] - cy + dist_noise_base * random_ratio(percent);
pt.xyz[2] = pt.xyz[2] - cz + dist_noise_base * random_ratio(percent);
}
std::vector<bool> need_modification(camera_data.size(), true);
int invalid_count = 0, modify_iteration = 1;
do
{
if(invalid_count) LOG_OUT() << "NOTE" << std::setw(2) << modify_iteration
<< ": modify " << invalid_count << " camera to fix visibility\n";
//////////////////////////////////////////////////////
for(size_t i = 0; i < camera_data.size(); ++i)
{
if(!need_modification[i])continue;
CameraT & cam = camera_data[i];
double e[3], c[3]; cam = backup[i];
cam.f *= random_ratio(percent);
///////////////////////////////////////////////////////////
cam.GetCameraCenter(c);
c[0] = c[0] - cx + dist_noise_base * random_ratio(percent);
c[1] = c[1] - cy + dist_noise_base * random_ratio(percent);
c[2] = c[2] - cz + dist_noise_base * random_ratio(percent);
///////////////////////////////////////////////////////////
cam.GetRodriguesRotation(e);
e[0] *= random_ratio(percent);
e[1] *= random_ratio(percent);
e[2] *= random_ratio(percent);
///////////////////////////////////////////////////////////
cam.SetRodriguesRotation(e);
cam.SetCameraCenterAfterRotation(c);
}
std::vector<bool> invalidc(camera_data.size(), false);
invalid_count = 0;
for(size_t i = 0; i < ptidx.size(); ++i)
{
int cid = camidx[i];
if(need_modification[cid] ==false) continue;
if(invalidc[cid])continue;
CameraT& cam = camera_data[cid];
Point3D& pt = point_data[ptidx[i]];
float z = cam.m[2][0] * pt.xyz[0] + cam.m[2][1] * pt.xyz[1] + cam.m[2][2] * pt.xyz[2] + cam.t[2];
if (z * zz0[i] > 0)continue;
if (zz0[i] == 0 && z > 0) continue;
invalid_count++;
invalidc[cid] = true;
}
need_modification = invalidc;
modify_iteration++;
}while(invalid_count && modify_iteration < 20);
}
void ExamineVisiblity(const char* input_filename )
{
//////////////
std::vector<CameraD> camera_data;
std::vector<Point3B> point_data;
std::vector<int> ptidx, camidx;
std::vector<Point2D> measurements;
std::ifstream in (input_filename);
LoadBundlerModel(in, camera_data, point_data, measurements, ptidx, camidx);
////////////////
int count = 0; double d1 = 100, d2 = 100;
LOG_OUT() << "checking visibility...\n";
std::vector<double> zz(ptidx.size());
for(size_t i = 0; i < ptidx.size(); ++i)
{
CameraD& cam = camera_data[camidx[i]];
Point3B& pt = point_data[ptidx[i]];
double dz = cam.m[2][0] * pt.xyz[0] + cam.m[2][1] * pt.xyz[1] + cam.m[2][2] * pt.xyz[2] + cam.t[2];
//double dx = cam.m[0][0] * pt.xyz[0] + cam.m[0][1] * pt.xyz[1] + cam.m[0][2] * pt.xyz[2] + cam.t[0];
//double dy = cam.m[1][0] * pt.xyz[0] + cam.m[1][1] * pt.xyz[1] + cam.m[1][2] * pt.xyz[2] + cam.t[1];
////////////////////////////////////////
float c[3]; cam.GetCameraCenter(c);
CameraT camt; camt.SetCameraT(cam);
Point3D ptt; ptt.SetPoint(pt.xyz);
double fz = camt.m[2][0] * ptt.xyz[0] + camt.m[2][1] * ptt.xyz[1] + camt.m[2][2] * ptt.xyz[2] + camt.t[2];
double fz2 = camt.m[2][0] * (ptt.xyz[0] - c[0]) + camt.m[2][1] * (ptt.xyz[1] - c[1])
+ camt.m[2][2] * (ptt.xyz[2] - c[2]);
//if(dz == 0 && fz == 0) continue;
if(dz * fz <= 0 || fz == 0)
{
LOG_OUT() << "cam " << camidx[i] //<<// "; dx = " << dx << "; dy = " << dy
<< "; double: " << dz << "; float " << fz << "; float2 " << fz2 << "\n";
//LOG_OUT() << cam.m[2][0] << " "<<cam.m[2][1]<< " " << cam.m[2][2] << " "<<cam.t[2] << "\n";
//LOG_OUT() << camt.m[2][0] << " "<<camt.m[2][1]<< " " << camt.m[2][2] << " "<<camt.t[2] << "\n";
//LOG_OUT() << cam.m[2][0] - camt.m[2][0] << " " <<cam.m[2][1] - camt.m[2][1]<< " "
// << cam.m[2][2] - camt.m[2][2] << " " <<cam.t[2] - camt.t[2]<< "\n";
}
zz[i] = dz;
d1 = std::min(fabs(dz), d1);
d2 = std::min(fabs(fz), d2);
}
LOG_OUT() << count << " points moved to wrong side "
<< d1 << ", " << d2 <<"\n";
}
bool RemoveInvisiblePoints( std::vector<CameraT>& camera_data, std::vector<Point3D>& point_data,
std::vector<int>& ptidx, std::vector<int>& camidx,
std::vector<Point2D>& measurements, std::vector<std::string>& names, std::vector<int>& ptc)
{
std::vector<float> zz(ptidx.size());
for(size_t i = 0; i < ptidx.size(); ++i)
{
CameraT& cam = camera_data[camidx[i]];
Point3D& pt = point_data[ptidx[i]];
zz[i] = cam.m[2][0] * pt.xyz[0] + cam.m[2][1] * pt.xyz[1] + cam.m[2][2] * pt.xyz[2] + cam.t[2];
}
size_t median_idx = ptidx.size() / 2;
std::nth_element(zz.begin(), zz.begin() + median_idx, zz.end());
float dist_threshold = zz[median_idx] * 0.001f;
//keep removing 3D points. until all of them are infront of the cameras..
std::vector<bool> pmask(point_data.size(), true);
int points_removed = 0;
for(size_t i = 0; i < ptidx.size(); ++i)
{
int cid = camidx[i], pid = ptidx[i];
if(!pmask[pid])continue;
CameraT& cam = camera_data[cid];
Point3D& pt = point_data[pid];
bool visible = (cam.m[2][0] * pt.xyz[0] + cam.m[2][1] * pt.xyz[1] + cam.m[2][2] * pt.xyz[2] + cam.t[2] > dist_threshold);
pmask[pid] = visible; //this point should be removed
if(!visible) points_removed++;
}
if(points_removed == 0) return false;
std::vector<int> cv(camera_data.size(), 0);
//should any cameras be removed ?
int min_observation = 20; //cameras should see at least 20 points
do
{
//count visible points for each camera
std::fill(cv.begin(), cv.end(), 0);
for(size_t i = 0; i < ptidx.size(); ++i)
{
int cid = camidx[i], pid = ptidx[i];
if(pmask[pid]) cv[cid]++;
}
//check if any more points should be removed
std::vector<int> pv(point_data.size(), 0);
for(size_t i = 0; i < ptidx.size(); ++i)
{
int cid = camidx[i], pid = ptidx[i];
if(!pmask[pid]) continue; //point already removed
if(cv[cid] < min_observation) //this camera shall be removed.
{
///
}else
{
pv[pid]++;
}
}
points_removed = 0;
for(size_t i = 0; i < point_data.size(); ++i)
{
if(pmask[i] == false) continue;
if(pv[i] >= 2) continue;
pmask[i] = false;
points_removed++;
}
}while(points_removed > 0);
////////////////////////////////////
std::vector<bool> cmask(camera_data.size(), true);
for(size_t i = 0; i < camera_data.size(); ++i) cmask[i] = cv[i] >= min_observation;
////////////////////////////////////////////////////////
std::vector<int> cidx(camera_data.size());
std::vector<int> pidx(point_data.size());
///modified model.
std::vector<CameraT> camera_data2;
std::vector<Point3D> point_data2;
std::vector<int> ptidx2;
std::vector<int> camidx2;
std::vector<Point2D> measurements2;
std::vector<std::string> names2;
std::vector<int> ptc2;
//
if(names.size() < camera_data.size()) names.resize(camera_data.size(),std::string("unknown"));
if(ptc.size() < 3 * point_data.size()) ptc.resize(point_data.size() * 3, 0);
//////////////////////////////
int new_camera_count = 0, new_point_count = 0;
for(size_t i = 0; i < camera_data.size(); ++i)
{
if(!cmask[i])continue;
camera_data2.push_back(camera_data[i]);
names2.push_back(names[i]);
cidx[i] = new_camera_count++;
}
for(size_t i = 0; i < point_data.size(); ++i)
{
if(!pmask[i])continue;
point_data2.push_back(point_data[i]);
ptc.push_back(ptc[i]);
pidx[i] = new_point_count++;
}
int new_observation_count = 0;
for(size_t i = 0; i < ptidx.size(); ++i)
{
int pid = ptidx[i], cid = camidx[i];
if(!pmask[pid] || ! cmask[cid]) continue;
ptidx2.push_back(pidx[pid]);
camidx2.push_back(cidx[cid]);
measurements2.push_back(measurements[i]);
new_observation_count++;
}
LOG_OUT() << "NOTE: removing " << (camera_data.size() - new_camera_count) << " cameras; "<< (point_data.size() - new_point_count)
<< " 3D Points; " << (measurements.size() - new_observation_count) << " Observations;\n";
camera_data2.swap(camera_data); names2.swap(names);
point_data2.swap(point_data); ptc2.swap(ptc);
ptidx2.swap(ptidx); camidx2.swap(camidx);
measurements2.swap(measurements);
return true;
}
void SaveModelFile(const char* outpath, std::vector<CameraT>& camera_data, std::vector<Point3D>& point_data,
std::vector<Point2D>& measurements, std::vector<int>& ptidx, std::vector<int>& camidx,
std::vector<std::string>& names, std::vector<int>& ptc)
{
if(outpath == NULL) return;
if(strstr(outpath, ".nvm"))
SaveNVM(outpath, camera_data, point_data, measurements, ptidx, camidx, names, ptc);
else if(strstr(outpath, ".out"))
SaveBundlerOut(outpath, camera_data, point_data, measurements, ptidx, camidx, names, ptc);
else
SaveBundlerModel(outpath, camera_data, point_data, measurements, ptidx, camidx);
}
} // namespace PBA