|
|
#include "ColorComparisonFace.h" |
|
|
#include "Mesh.h" // 在cpp中包含完整定义 |
|
|
#include <opencv2/opencv.hpp> |
|
|
|
|
|
#include <cstdlib> |
|
|
#include <cstdio> |
|
|
#include <algorithm> |
|
|
#include <sys/stat.h> |
|
|
#include <iomanip> |
|
|
#include <sstream> |
|
|
|
|
|
using namespace MVS; |
|
|
|
|
|
// 辅助函数:检查目录是否存在 |
|
|
static bool directoryExists(const std::string& path) { |
|
|
struct stat info; |
|
|
if (stat(path.c_str(), &info) != 0) { |
|
|
return false; |
|
|
} |
|
|
return (info.st_mode & S_IFDIR) != 0; |
|
|
} |
|
|
|
|
|
// 辅助函数:创建目录 |
|
|
static bool createDirectory(const std::string& path) { |
|
|
#ifdef _WIN32 |
|
|
return _mkdir(path.c_str()) == 0; |
|
|
#else |
|
|
return mkdir(path.c_str(), 0755) == 0; |
|
|
#endif |
|
|
} |
|
|
|
|
|
// 辅助函数:递归创建目录 |
|
|
static bool createDirectories(const std::string& path) { |
|
|
size_t pos = 0; |
|
|
std::string dir; |
|
|
|
|
|
while ((pos = path.find_first_of("/\\", pos + 1)) != std::string::npos) { |
|
|
dir = path.substr(0, pos); |
|
|
if (!directoryExists(dir)) { |
|
|
if (!createDirectory(dir)) { |
|
|
return false; |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
// 创建最终目录 |
|
|
if (!directoryExists(path)) { |
|
|
return createDirectory(path); |
|
|
} |
|
|
|
|
|
return true; |
|
|
} |
|
|
|
|
|
// 构造函数 |
|
|
ColorComparisonFace::ColorComparisonFace(const std::string& dir) : outputDir(dir) { |
|
|
// 确保输出目录以斜杠结尾 |
|
|
if (!outputDir.empty() && outputDir.back() != '/' && outputDir.back() != '\\') { |
|
|
outputDir += '/'; |
|
|
} |
|
|
|
|
|
// 创建输出目录 |
|
|
if (!createDirectories(outputDir)) { |
|
|
printf("⚠️ 无法创建目录: %s\n", outputDir.c_str()); |
|
|
} else { |
|
|
printf("✅ 输出目录: %s\n", outputDir.c_str()); |
|
|
} |
|
|
} |
|
|
|
|
|
// 添加颜色信息(带图像区域) |
|
|
void ColorComparisonFace::addColorInfo(int faceId, |
|
|
const MeshColor& gaussianColor, |
|
|
const cv::Mat& imageRegion, |
|
|
float distance, float threshold, |
|
|
const std::string& filename) { |
|
|
ColorInfo info = {faceId, gaussianColor, imageRegion.clone(), distance, threshold, filename}; |
|
|
faceViewColorMap[faceId][filename].push_back(info); |
|
|
printf("addColorInfo faceId=%d", faceId); |
|
|
} |
|
|
|
|
|
// 获取总face数 |
|
|
int ColorComparisonFace::getTotalFaces() const { |
|
|
return faceViewColorMap.size(); |
|
|
} |
|
|
|
|
|
// 获取总记录数 |
|
|
int ColorComparisonFace::getTotalRecords() const { |
|
|
int total = 0; |
|
|
for (const auto& faceEntry : faceViewColorMap) { |
|
|
for (const auto& viewEntry : faceEntry.second) { |
|
|
total += viewEntry.second.size(); |
|
|
} |
|
|
} |
|
|
return total; |
|
|
} |
|
|
|
|
|
// 获取faceid列表 |
|
|
std::vector<int> ColorComparisonFace::getFaceIds() const { |
|
|
std::vector<int> faceIds; |
|
|
for (const auto& faceEntry : faceViewColorMap) { |
|
|
faceIds.push_back(faceEntry.first); |
|
|
} |
|
|
return faceIds; |
|
|
} |
|
|
|
|
|
// 创建实际图像区域对比图 |
|
|
void ColorComparisonFace::createBatchComparison(int maxBlocksPerRow, int maxFacesPerImage) { |
|
|
if (faceViewColorMap.empty()) { |
|
|
printf("⚠️ 没有颜色信息可生成\n"); |
|
|
return; |
|
|
} |
|
|
|
|
|
printf("正在创建实际图像区域对比图...\n"); |
|
|
printf("总face数: %zu\n", faceViewColorMap.size()); |
|
|
printf("总记录数: %d\n", getTotalRecords()); |
|
|
|
|
|
// 块参数 |
|
|
int imageRegionSize = 200; // 图像区域显示大小 |
|
|
int colorBlockSize = 100; // 高斯颜色块大小 |
|
|
int blockMargin = 20; // 块之间的边距 |
|
|
int infoHeight = 100; // 信息区域高度 |
|
|
|
|
|
// 限制处理的face数 |
|
|
int facesToProcess = std::min((int)faceViewColorMap.size(), maxFacesPerImage); |
|
|
|
|
|
// 处理前N个face |
|
|
int faceCount = 0; |
|
|
for (const auto& faceEntry : faceViewColorMap) { |
|
|
if (faceCount >= facesToProcess) break; |
|
|
|
|
|
int faceId = faceEntry.first; |
|
|
const auto& viewMap = faceEntry.second; |
|
|
|
|
|
printf("处理 face %d (%zu 个视图)...\n", faceId, viewMap.size()); |
|
|
|
|
|
// 计算需要的行数和列数 |
|
|
int numBlocks = 0; |
|
|
for (const auto& viewEntry : viewMap) { |
|
|
numBlocks += viewEntry.second.size(); |
|
|
} |
|
|
|
|
|
int numCols = std::min(maxBlocksPerRow, numBlocks); |
|
|
int numRows = (numBlocks + numCols - 1) / numCols; |
|
|
|
|
|
// 计算每个块的宽度和高度 |
|
|
int blockWidth = colorBlockSize + imageRegionSize + blockMargin * 3; |
|
|
int blockHeight = imageRegionSize + blockMargin + infoHeight; |
|
|
|
|
|
// 图片总尺寸 |
|
|
int totalWidth = numCols * (blockWidth + blockMargin) + blockMargin; |
|
|
int totalHeight = 60 + (numRows * (blockHeight + blockMargin)) + blockMargin; |
|
|
|
|
|
// 创建大图 |
|
|
cv::Mat faceImage(totalHeight, totalWidth, CV_8UC3, cv::Scalar(245, 245, 245)); |
|
|
|
|
|
// 添加标题 |
|
|
std::string title = cv::format("Face %d - Image Region Comparison", faceId); |
|
|
cv::putText(faceImage, title, |
|
|
cv::Point(20, 30), |
|
|
cv::FONT_HERSHEY_SIMPLEX, 0.8, cv::Scalar(0, 0, 0), 2); |
|
|
|
|
|
// 添加统计信息 |
|
|
int totalRecords = 0; |
|
|
int needFixCount = 0; |
|
|
for (const auto& viewEntry : viewMap) { |
|
|
totalRecords += viewEntry.second.size(); |
|
|
for (const auto& info : viewEntry.second) { |
|
|
if (info.distance > info.threshold) needFixCount++; |
|
|
} |
|
|
} |
|
|
|
|
|
std::string stats = cv::format("Views: %zu, Records: %d, Need Fix: %d", |
|
|
viewMap.size(), totalRecords, needFixCount); |
|
|
cv::putText(faceImage, stats, |
|
|
cv::Point(20, 55), |
|
|
cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0), 1); |
|
|
|
|
|
int blockIndex = 0; |
|
|
int currentRow = 0; |
|
|
int currentCol = 0; |
|
|
|
|
|
// 遍历这个face的所有视图 |
|
|
for (const auto& viewEntry : viewMap) { |
|
|
const std::string& viewName = viewEntry.first; |
|
|
const std::vector<ColorInfo>& infos = viewEntry.second; |
|
|
|
|
|
for (const auto& info : infos) { |
|
|
// 计算当前块的位置 |
|
|
int blockX = blockMargin + currentCol * (blockWidth + blockMargin); |
|
|
int blockY = 60 + blockMargin + currentRow * (blockHeight + blockMargin); |
|
|
|
|
|
// 绘制块背景 |
|
|
cv::rectangle(faceImage, |
|
|
cv::Rect(blockX, blockY, blockWidth, blockHeight), |
|
|
cv::Scalar(255, 255, 255), -1); |
|
|
cv::rectangle(faceImage, |
|
|
cv::Rect(blockX, blockY, blockWidth, blockHeight), |
|
|
cv::Scalar(200, 200, 200), 2); |
|
|
|
|
|
// 绘制高斯颜色块 |
|
|
int gaussianX = blockX + blockMargin; |
|
|
int gaussianY = blockY + blockMargin; |
|
|
|
|
|
cv::Scalar gaussianBGR(info.gaussianColor[2], info.gaussianColor[1], info.gaussianColor[0]); |
|
|
cv::rectangle(faceImage, |
|
|
cv::Rect(gaussianX, gaussianY, colorBlockSize, colorBlockSize), |
|
|
gaussianBGR, -1); |
|
|
cv::rectangle(faceImage, |
|
|
cv::Rect(gaussianX, gaussianY, colorBlockSize, colorBlockSize), |
|
|
cv::Scalar(0, 0, 0), 2); |
|
|
|
|
|
// 添加高斯标签 |
|
|
cv::putText(faceImage, "GAUSSIAN", |
|
|
cv::Point(gaussianX + 10, gaussianY - 5), |
|
|
cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0), 1); |
|
|
|
|
|
// 绘制图像区域 |
|
|
int imageX = blockX + blockMargin + colorBlockSize + blockMargin; |
|
|
int imageY = blockY + blockMargin; |
|
|
|
|
|
if (!info.imageRegion.empty()) { |
|
|
// 调整图像区域大小 |
|
|
cv::Mat resizedRegion; |
|
|
cv::resize(info.imageRegion, resizedRegion, cv::Size(imageRegionSize, imageRegionSize)); |
|
|
|
|
|
// 将图像区域绘制到指定位置 |
|
|
resizedRegion.copyTo(faceImage(cv::Rect(imageX, imageY, imageRegionSize, imageRegionSize))); |
|
|
|
|
|
cv::rectangle(faceImage, |
|
|
cv::Rect(imageX, imageY, imageRegionSize, imageRegionSize), |
|
|
cv::Scalar(0, 0, 0), 2); |
|
|
|
|
|
// 添加原始图像标签 |
|
|
cv::putText(faceImage, "ORIGINAL", |
|
|
cv::Point(imageX + 10, imageY - 5), |
|
|
cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0), 1); |
|
|
} else { |
|
|
// 如果没有图像区域,绘制占位符 |
|
|
cv::rectangle(faceImage, |
|
|
cv::Rect(imageX, imageY, imageRegionSize, imageRegionSize), |
|
|
cv::Scalar(200, 200, 200), -1); |
|
|
cv::rectangle(faceImage, |
|
|
cv::Rect(imageX, imageY, imageRegionSize, imageRegionSize), |
|
|
cv::Scalar(150, 150, 150), 2); |
|
|
|
|
|
cv::putText(faceImage, "NO IMAGE", |
|
|
cv::Point(imageX + imageRegionSize/2 - 40, imageY + imageRegionSize/2), |
|
|
cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(100, 100, 100), 1); |
|
|
} |
|
|
|
|
|
// 绘制信息区域 |
|
|
int infoY = blockY + blockMargin + imageRegionSize; |
|
|
cv::rectangle(faceImage, |
|
|
cv::Rect(blockX, infoY, blockWidth, infoHeight), |
|
|
cv::Scalar(240, 240, 240), -1); |
|
|
cv::rectangle(faceImage, |
|
|
cv::Rect(blockX, infoY, blockWidth, infoHeight), |
|
|
cv::Scalar(200, 200, 200), 1); |
|
|
|
|
|
// 添加视图信息 |
|
|
std::string displayName = viewName; |
|
|
if (displayName.length() > 20) { |
|
|
displayName = displayName.substr(0, 18) + "..."; |
|
|
} |
|
|
|
|
|
cv::putText(faceImage, cv::format("View: %s", displayName.c_str()), |
|
|
cv::Point(blockX + 10, infoY + 20), |
|
|
cv::FONT_HERSHEY_SIMPLEX, 0.4, cv::Scalar(0, 0, 0), 1); |
|
|
|
|
|
cv::putText(faceImage, cv::format("Face: %d", info.faceId), |
|
|
cv::Point(blockX + 10, infoY + 40), |
|
|
cv::FONT_HERSHEY_SIMPLEX, 0.4, cv::Scalar(0, 0, 0), 1); |
|
|
|
|
|
// 添加颜色值 |
|
|
cv::putText(faceImage, |
|
|
cv::format("Gaussian: R=%d, G=%d, B=%d", |
|
|
info.gaussianColor[0], info.gaussianColor[1], info.gaussianColor[2]), |
|
|
cv::Point(blockX + 10, infoY + 60), |
|
|
cv::FONT_HERSHEY_SIMPLEX, 0.35, cv::Scalar(0, 0, 0), 1); |
|
|
|
|
|
// 添加距离和阈值 |
|
|
cv::putText(faceImage, |
|
|
cv::format("Distance: %.4f", info.distance), |
|
|
cv::Point(blockX + 10, infoY + 80), |
|
|
cv::FONT_HERSHEY_SIMPLEX, 0.35, cv::Scalar(0, 0, 0), 1); |
|
|
|
|
|
cv::putText(faceImage, |
|
|
cv::format("Threshold: %.4f", info.threshold), |
|
|
cv::Point(blockX + 10, infoY + 95), |
|
|
cv::FONT_HERSHEY_SIMPLEX, 0.35, cv::Scalar(0, 0, 0), 1); |
|
|
|
|
|
// 添加判断结果 |
|
|
int resultX = blockX + blockWidth - 60; |
|
|
int resultY = infoY + 25; |
|
|
|
|
|
std::string resultText = (info.distance > info.threshold) ? "FIX" : "OK"; |
|
|
cv::Scalar resultColor = (info.distance > info.threshold) ? cv::Scalar(0, 0, 255) : cv::Scalar(0, 180, 0); |
|
|
|
|
|
cv::putText(faceImage, resultText, |
|
|
cv::Point(resultX, resultY), |
|
|
cv::FONT_HERSHEY_SIMPLEX, 0.5, resultColor, 1); |
|
|
|
|
|
// 更新行和列索引 |
|
|
blockIndex++; |
|
|
currentCol++; |
|
|
if (currentCol >= numCols) { |
|
|
currentCol = 0; |
|
|
currentRow++; |
|
|
} |
|
|
|
|
|
// 如果已经达到最大块数,跳出循环 |
|
|
if (blockIndex >= maxBlocksPerRow * numRows) { |
|
|
break; |
|
|
} |
|
|
} |
|
|
|
|
|
// 如果已经达到最大块数,跳出循环 |
|
|
if (blockIndex >= maxBlocksPerRow * numRows) { |
|
|
break; |
|
|
} |
|
|
} |
|
|
|
|
|
// 保存图片 |
|
|
std::string outputPath = outputDir + cv::format("face_%d_image_comparison.png", faceId); |
|
|
|
|
|
if (!cv::imwrite(outputPath, faceImage)) { |
|
|
printf("❌ 无法保存face %d的图像区域对比图: %s\n", faceId, outputPath.c_str()); |
|
|
} else { |
|
|
printf("✅ face %d图像区域对比图已保存: %s\n", faceId, outputPath.c_str()); |
|
|
printf(" 尺寸: %d x %d 像素, 视图数: %zu, 记录数: %d\n", |
|
|
totalWidth, totalHeight, viewMap.size(), totalRecords); |
|
|
} |
|
|
|
|
|
faceCount++; |
|
|
} |
|
|
|
|
|
// 保存颜色信息到CSV文件 |
|
|
saveColorInfoToFile(); |
|
|
} |
|
|
|
|
|
// 保存颜色信息到CSV文件 |
|
|
void ColorComparisonFace::saveColorInfoToFile() { |
|
|
// 为每个face保存单独的CSV |
|
|
for (const auto& faceEntry : faceViewColorMap) { |
|
|
int faceId = faceEntry.first; |
|
|
const auto& viewMap = faceEntry.second; |
|
|
|
|
|
if (viewMap.empty()) { |
|
|
continue; |
|
|
} |
|
|
|
|
|
std::string filePath = outputDir + cv::format("face_%d_colors.csv", faceId); |
|
|
FILE* fp = fopen(filePath.c_str(), "w"); |
|
|
|
|
|
if (!fp) { |
|
|
printf("❌ 无法创建文件: %s\n", filePath.c_str()); |
|
|
continue; |
|
|
} |
|
|
|
|
|
// 写入CSV标题 |
|
|
fprintf(fp, "FaceID,View,Gaussian_R,Gaussian_G,Gaussian_B,Distance,Threshold,NeedsFix\n"); |
|
|
|
|
|
for (const auto& viewEntry : viewMap) { |
|
|
const std::string& viewName = viewEntry.first; |
|
|
const std::vector<ColorInfo>& infos = viewEntry.second; |
|
|
|
|
|
for (int i = 0; i < (int)infos.size(); i++) { |
|
|
const ColorInfo& info = infos[i]; |
|
|
bool needsFix = (info.distance > info.threshold); |
|
|
fprintf(fp, "%d,%s,%d,%d,%d,%.4f,%.4f,%s\n", |
|
|
faceId, |
|
|
viewName.c_str(), |
|
|
info.gaussianColor[0], info.gaussianColor[1], info.gaussianColor[2], |
|
|
info.distance, info.threshold, |
|
|
needsFix ? "YES" : "NO"); |
|
|
} |
|
|
} |
|
|
|
|
|
fclose(fp); |
|
|
printf("✅ face %d颜色信息已保存到: %s\n", faceId, filePath.c_str()); |
|
|
} |
|
|
|
|
|
// 保存汇总统计信息 |
|
|
std::string summaryPath = outputDir + "image_comparison_summary.csv"; |
|
|
FILE* summaryFp = fopen(summaryPath.c_str(), "w"); |
|
|
|
|
|
if (summaryFp) { |
|
|
fprintf(summaryFp, "FaceID,Views,TotalRecords,NeedFixRecords,NeedFix%%,MinDistance,MaxDistance,AvgDistance\n"); |
|
|
|
|
|
for (const auto& faceEntry : faceViewColorMap) { |
|
|
int faceId = faceEntry.first; |
|
|
const auto& viewMap = faceEntry.second; |
|
|
|
|
|
int totalRecords = 0; |
|
|
int needFixCount = 0; |
|
|
float minDist = std::numeric_limits<float>::max(); |
|
|
float maxDist = 0.0f; |
|
|
float sumDist = 0.0f; |
|
|
|
|
|
for (const auto& viewEntry : viewMap) { |
|
|
const std::vector<ColorInfo>& infos = viewEntry.second; |
|
|
totalRecords += infos.size(); |
|
|
|
|
|
for (const auto& info : infos) { |
|
|
if (info.distance > info.threshold) needFixCount++; |
|
|
minDist = std::min(minDist, info.distance); |
|
|
maxDist = std::max(maxDist, info.distance); |
|
|
sumDist += info.distance; |
|
|
} |
|
|
} |
|
|
|
|
|
float avgDist = (totalRecords > 0) ? (sumDist / totalRecords) : 0.0f; |
|
|
float fixPercentage = (totalRecords > 0) ? (needFixCount * 100.0f / totalRecords) : 0.0f; |
|
|
|
|
|
fprintf(summaryFp, "%d,%zu,%d,%d,%.2f%%,%.4f,%.4f,%.4f\n", |
|
|
faceId, |
|
|
viewMap.size(), |
|
|
totalRecords, |
|
|
needFixCount, |
|
|
fixPercentage, |
|
|
minDist, |
|
|
maxDist, |
|
|
avgDist); |
|
|
} |
|
|
|
|
|
fclose(summaryFp); |
|
|
printf("✅ 汇总统计信息已保存到: %s\n", summaryPath.c_str()); |
|
|
} |
|
|
} |