import open3d as o3d import numpy as np import copy import time import argparse from general import * # ------------------------ 开始:对外接口,获取bbox数据 -------------------- """ 对外部提供的获取bbox数据的接口 compute_bbox_out 参数: obj_path, 模型数据路径 返回: total_matrix: 旋转矩阵, 16位浮点型, 例如, [[ 0.13644984 0.99064698 0. -49.71074343] [ -0.99064698 0.13644984 0. -28.80249299] [ 0. 0. 1. 3.26326203] [ 0. 0. 0. 1. ]] z_max : z最高点, 1位浮点型, 例如, 1.0 min_bound : bbox最低点, 3位浮点型, 例如, [-1.0, -1.0, 0.0] max_bound : bbox最低点, 3位浮点型, 例如, [0.0, 0.0, 1.0] ply_name : ply的名字, 字符串, 例如, 857420_268473_P85240_5cm_x1=9.41+49.997+49.997.ply """ def compute_bbox_out(mesh_obj): return compute_bbox_ext(mesh_obj) # -------------------------- 结束:对外接口,获取bbox数据 ---------------- # -------------------------- 开始:获取z值最低 -------------------------- def get_lowest_position_of_z_ext(mesh_obj): total_matrix = np.eye(4) voxel_size = 3 # print(f"obj_path={obj_path}, get_lowest_position_of_center voxel_size={voxel_size}") start_time1 = time.time() vertices = np.asarray(mesh_obj.vertices) # 确保网格有顶点 if len(vertices) == 0: # raise ValueError(f"Mesh has no vertices: {obj_path}") print(f"Warning: Mesh has no vertices: {mesh_obj}") return None pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(vertices) # print("voxel_size",voxel_size,obj_path, len(pcd.points), len(mesh_obj.vertices)) # 对点云进行下采样(体素网格法) #""" pcd_downsampled = down_sample(pcd, voxel_size) pcd_downsampled.paint_uniform_color([0, 0, 1]) if len(np.asarray(pcd_downsampled.points)) <= 0: bbox = pcd.get_axis_aligned_bounding_box() volume = bbox.volume() # print(f"len(pcd.points)={len(pcd.points)}, volume={volume}") # 处理体积为零的情况 if volume <= 0: # 计算点云的实际范围 points = np.asarray(pcd.points) if len(points) > 0: min_bound = np.min(points, axis=0) max_bound = np.max(points, axis=0) extent = max_bound - min_bound # 确保最小维度至少为0.01 min_dimension = max(0.01, np.min(extent)) volume = min_dimension ** 3 else: volume = 1.0 # 最后的安全回退 print(f"Warning: Zero volume detected, using approximated volume {volume:.6f} for {obj_path}") # 安全计算密度 - 防止除零错误 if len(pcd.points) > 0 and volume > 0: original_density = len(pcd.points) / volume voxel_size = max(0.01, min(10.0, 0.5 / (max(1e-6, original_density) ** 0.33))) else: # 当点数为0或体积为0时使用默认体素大小 voxel_size = 1.0 # 默认值 print(f"Recalculated voxel_size: {voxel_size} for {obj_path}") pcd_downsampled = down_sample(pcd, voxel_size) pcd_downsampled.paint_uniform_color([0, 0, 1]) original_num = len(pcd.points) target_samples = 1000 num_samples = min(target_samples, original_num) # print("get_lowest_position_of_center1 time", time.time()-start_time1) start_time2 = time.time() # 确保下采样后有点云 if len(np.asarray(pcd_downsampled.points)) == 0: # 使用原始点云作为后备 pcd_downsampled = pcd print(f"Warning: Using original point cloud for {obj_path} as downsampling produced no points") points = np.asarray(pcd_downsampled.points) # 初始化最小重心Y的值 max_z_of_mass_y = float('inf') best_angle_x, best_angle_y, best_angle_z = 0, 0, 0 best_angle_x, best_angle_y, best_angle_z, max_z_of_mass_y = parallel_rotation(points, angle_step=3) # 使用最佳角度进行旋转并平移obj pcd_transformed = copy.deepcopy(mesh_obj) # 最佳角度旋转 R_x = pcd_transformed.get_rotation_matrix_from_axis_angle(np.array([1, 0, 0]) * np.radians(best_angle_x)) pcd_transformed.rotate(R_x) R_y = pcd_transformed.get_rotation_matrix_from_axis_angle(np.array([0, 1, 0]) * np.radians(best_angle_y)) pcd_transformed.rotate(R_y) R_z = pcd_transformed.get_rotation_matrix_from_axis_angle(np.array([0, 0, 1]) * np.radians(best_angle_z)) pcd_transformed.rotate(R_z) T_x = np.eye(4) T_x[:3, :3] = R_x center_point = compute_mesh_center(mesh_obj.vertices) T_center_to_origin = np.eye(4) T_center_to_origin[:3, 3] = -center_point T_origin_to_center = np.eye(4) T_origin_to_center[:3, 3] = center_point T_rot_center = T_origin_to_center @ T_x @ T_center_to_origin total_matrix = T_rot_center @ total_matrix T_y = np.eye(4) T_y[:3, :3] = R_y center_point = compute_mesh_center(mesh_obj.vertices) T_center_to_origin = np.eye(4) T_center_to_origin[:3, 3] = -center_point T_origin_to_center = np.eye(4) T_origin_to_center[:3, 3] = center_point T_rot_center = T_origin_to_center @ T_y @ T_center_to_origin total_matrix = T_rot_center @ total_matrix T_z = np.eye(4) T_z[:3, :3] = R_z center_point = compute_mesh_center(mesh_obj.vertices) T_center_to_origin = np.eye(4) T_center_to_origin[:3, 3] = -center_point T_origin_to_center = np.eye(4) T_origin_to_center[:3, 3] = center_point T_rot_center = T_origin_to_center @ T_z @ T_center_to_origin total_matrix = T_rot_center @ total_matrix #试着旋转180,让脸朝上 vertices = np.asarray(pcd_transformed.vertices) # 计算平移向量,将最小Y值平移到0 min_z = np.min(vertices[:, 2]) translation_vector = np.array([0,0,-min_z,]) pcd_transformed.translate(translation_vector) T_trans1 = np.eye(4) T_trans1[:3, 3] = translation_vector total_matrix = T_trans1 @ total_matrix # 计算 z 坐标均值 vertices = np.asarray(pcd_transformed.vertices) z_mean1 = np.mean(vertices[:, 2]) z_max1 = np.max(vertices[:, 2]) volume_centroid = get_volume_centroid(pcd_transformed) z_volume_center1 = volume_centroid[2] angle_rad = np.pi #print("旋转前质心:", pcd_transformed.get_center()) #print("旋转前点示例:", np.asarray(pcd_transformed.vertices)[:3]) R_y = pcd_transformed.get_rotation_matrix_from_axis_angle(np.array([0, 1, 0]) * angle_rad) pcd_transformed.translate(-center_point) pcd_transformed.rotate(R_y, center=(0, 0, 0)) pcd_transformed.translate(center_point) aabb = pcd_transformed.get_axis_aligned_bounding_box() # center_point = aabb.get_center() center_point = compute_mesh_center(mesh_obj.vertices) # 构建绕中心点旋转的变换矩阵[3](@ref) T_center_to_origin = np.eye(4) T_center_to_origin[:3, 3] = -center_point R_y180 = pcd_transformed.get_rotation_matrix_from_axis_angle(np.array([0, 1, 0]) * angle_rad) T_rotate = np.eye(4) T_rotate[:3, :3] = R_y180 T_origin_to_center = np.eye(4) T_origin_to_center[:3, 3] = center_point T_rot_center = T_origin_to_center @ T_rotate @ T_center_to_origin total_matrix = T_rot_center @ total_matrix #print("旋转后质心:", pcd_transformed.get_center()) #print("旋转后点示例:", np.asarray(pcd_transformed.vertices)[:3]) # vertices = np.asarray(pcd_transformed.vertices) # 计算平移向量,将最小Y值平移到0 min_z = np.min(vertices[:, 2]) max_z = np.max(vertices[:, 2]) # print("min_z1", min_z, obj_path) translation_vector = np.array([0,0,-min_z,]) # translation_vector = np.array([0,0,-min_z + (min_z-max_z),]) # print("translation_vector1",translation_vector) pcd_transformed.translate(translation_vector) T_trans2 = np.eye(4) T_trans2[:3, 3] = translation_vector translation = total_matrix[:3, 3] # print("translation_vector2",translation_vector) # print(1,translation) total_matrix = T_trans2 @ total_matrix translation = total_matrix[:3, 3] # print(2,translation) # 计算 z 坐标均值 vertices = np.asarray(pcd_transformed.vertices) z_mean2 = np.mean(vertices[:, 2]) z_max2 = np.max(vertices[:, 2]) volume_centroid = get_volume_centroid(pcd_transformed) z_volume_center2 = volume_centroid[2] # print(f"get_lowest_position_of_center z_max1={z_max1}, z_max2={z_max2}, len={len(pcd_transformed.vertices)}, obj_path={obj_path}") # print(f"z_mean1={z_mean1}, z_mean2={z_mean2}") # if (z_mean2 > z_mean1): # print(f"z_volume_center1={z_volume_center1}, z_volume_center2={z_volume_center2}") if (z_volume_center2 > z_volume_center1): R_y = pcd_transformed.get_rotation_matrix_from_axis_angle(np.array([0, 1, 0]) * -angle_rad) centroid = pcd_transformed.get_center() aabb = pcd_transformed.get_axis_aligned_bounding_box() # center_point = aabb.get_center() center_point = compute_mesh_center(mesh_obj.vertices) pcd_transformed.translate(-center_point) pcd_transformed.rotate(R_y, center=(0, 0, 0)) pcd_transformed.translate(center_point) T_center_to_origin = np.eye(4) T_center_to_origin[:3, 3] = -center_point T_origin_to_center = np.eye(4) T_origin_to_center[:3, 3] = center_point # 构建反向旋转矩阵 R_y = pcd_transformed.get_rotation_matrix_from_axis_angle(np.array([0, 1, 0]) * -angle_rad) T_rotate_inv = np.eye(4) T_rotate_inv[:3, :3] = R_y # 完整的反向绕中心旋转矩阵 T_rot_center_inv = T_origin_to_center @ T_rotate_inv @ T_center_to_origin total_matrix = T_rot_center_inv @ total_matrix vertices = np.asarray(pcd_transformed.vertices) # 计算平移向量,将最小Y值平移到0 min_z = np.min(vertices[:, 2]) # print("min_z2", min_z, obj_path) translation_vector = np.array([0,0,-min_z,]) pcd_transformed.translate(translation_vector) T_trans3 = np.eye(4) T_trans3[:3, 3] = translation_vector total_matrix = T_trans3 @ total_matrix # z_mean_min = min(z_mean1, z_mean2) z_max = min(z_max1, z_max2) # print("get_lowest_position_of_center2 time", time.time()-start_time2) return total_matrix, z_max def get_lowest_position_of_center_ext(mesh_obj, total_matrix): print(f"get_lowest_position_of_center_ext mesh_obj={mesh_obj}") temp_matrix, z_max = get_lowest_position_of_z_ext(mesh_obj) total_matrix = temp_matrix @ total_matrix return total_matrix, z_max def calculate_rotation_and_top_of_mass(angle_x, angle_y, angle_z, points): """计算某一组旋转角度后的重心""" # 计算绕X轴、Y轴和Z轴的旋转矩阵 R_x = np.array([ [1, 0, 0], [0, np.cos(np.radians(angle_x)), -np.sin(np.radians(angle_x))], [0, np.sin(np.radians(angle_x)), np.cos(np.radians(angle_x))] ]) R_y = np.array([ [np.cos(np.radians(angle_y)), 0, np.sin(np.radians(angle_y))], [0, 1, 0], [-np.sin(np.radians(angle_y)), 0, np.cos(np.radians(angle_y))] ]) R_z = np.array([ [np.cos(np.radians(angle_z)), -np.sin(np.radians(angle_z)), 0], [np.sin(np.radians(angle_z)), np.cos(np.radians(angle_z)), 0], [0, 0, 1] ]) # 综合旋转矩阵 R = R_z @ R_y @ R_x # 执行旋转 rotated_points = points @ R.T # 计算最小z值 min_z = np.min(rotated_points[:, 2]) # 计算平移向量,将最小Z值平移到0 translation_vector = np.array([0, 0, -min_z]) rotated_points += translation_vector top_of_mass = np.max(rotated_points, axis=0) return top_of_mass[2], angle_x, angle_y, angle_z def parallel_rotation(points, angle_step=4): """仅绕 Y 轴旋转(假设 X/Z 轴不影响目标函数)""" max_top = float('inf') for angle_x in range(-90, 90, angle_step): for angle_y in range(0, 360, angle_step): max_z, ax, ay, _ = calculate_rotation_and_top_of_mass(angle_x, angle_y, 0, points) if max_z < max_top: max_top = max_z best_angle_x = ax best_angle_y = ay return (best_angle_x, best_angle_y, 0, max_top) def compute_mesh_center(vertices): if len(vertices) == 0: raise ValueError("顶点数组不能为空") # 确保vertices是NumPy数组 vertices_np = np.asarray(vertices) # 使用NumPy的mean函数直接计算均值(向量化操作) centroid = np.mean(vertices_np, axis=0) return centroid # -------------------------- 结束:获取z值最低 -------------------------- # -------------------------- 开始:bbox -------------------------- def get_models_bbox(dict_pcd_fix): """ 单独提取:从dict_fix中解析所有模型的包围盒(bbox)尺寸信息 :param dict_fix: 包含PLY文件名和对应点云的字典 :return: 模型列表(包含name和dimensions) """ all_models = [] extend_dist = 2 # 尺寸扩展量(单位:厘米) for ply_file in dict_pcd_fix: # 解析PLY文件名中的尺寸信息(格式:"模型ID=维度1+维度2+维度3.ply") bbox_with_text = ply_file.split("=") bbox_with = bbox_with_text[-1] split_text = bbox_with.replace(".ply", "").split("+") # 转换单位:米 → 厘米 → 加扩展量 → 转回米(int取整避免浮点数精度问题) x_length = int(float(split_text[2]) * 100) + extend_dist # 第三个维度→x方向 y_length = int(float(split_text[0]) * 100) + extend_dist # 第一个维度→y方向 z_length = int(float(split_text[1]) * 100) + extend_dist # 第二个维度→z方向 all_models.append({ 'name': ply_file, 'dimensions': (int(x_length / 100), int(z_length / 100), int(y_length / 100)) # 单位:米 }) return all_models def arrange_models_on_platform(models, machine_size): """ 单独提取:将模型在打印平台上进行排版布局 :param models: 由get_models_bbox返回的模型列表(包含name和dimensions) :param machine_size: 打印机尺寸 (width, depth, height) :return: (placed_models, unplaced_models) - 已放置和未放置的模型列表 """ # 初始化打印平台 platform = Platform( int(machine_size[0]), int(machine_size[1]), int(machine_size[2]) ) print("开始计算排序...") platform.arrange_models(models) platform.print_results() return platform.get_result() import os def compute_bbox_all_ext(base_original_obj_dir,compact_min_dis=True): obj_id_list = [aa.split(".o")[0] for aa in os.listdir(base_original_obj_dir) if aa.endswith(".obj")] obj_id_list = obj_id_list dict_mesh_obj = {} for pid_t_y in obj_id_list: obj_name = pid_t_y+".obj" obj_path = os.path.join(base_original_obj_dir,obj_name) mesh_obj = read_mesh(obj_path) if mesh_obj is None: continue dict_mesh_obj[obj_name] = mesh_obj return compute_bbox_all(dict_mesh_obj,compact_min_dis) def compute_bbox_all(dict_mesh_obj,is_downsample): dict_total_matrix= {} dict_pcd_fix= {} for key, value in dict_mesh_obj.items(): start_time = time.time() obj_name = key mesh_obj = value total_matrix, pcd_fix, ply_name = compute_bbox(mesh_obj,obj_name,is_downsample) dict_total_matrix[obj_name] = total_matrix dict_pcd_fix[ply_name] = pcd_fix print(f"compute_bbox obj_name={obj_name} ply_name={ply_name} time={time.time()-start_time}") # dict_mesh_obj.clear() # del dict_mesh_obj all_models = get_models_bbox(dict_pcd_fix) return dict_total_matrix,all_models def compute_bbox(mesh_obj, obj_name="", is_downsample=True): # return compute_bbox_ext(mesh_obj, obj_name, is_downsample) mesh_obj_origin = copy.deepcopy(mesh_obj) total_matrix, z_max, min_bound, max_bound, ply_name = compute_bbox_ext(mesh_obj, obj_name, is_downsample) transformed_vertices = mesh_transform_by_matrix(np.asarray(mesh_obj_origin.vertices), total_matrix) pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(transformed_vertices) if is_downsample: pcd_downsampled = down_sample(pcd, voxel_size, False) pcd_fix = pcd_downsampled else: pcd_fix = pcd return total_matrix, pcd_fix, ply_name def compute_bbox_ext(mesh_obj, obj_name="", is_downsample=True): total_matrix = np.eye(4) total_matrix, z_max= get_lowest_position_of_center_ext(mesh_obj, total_matrix) transformed_vertices = mesh_transform_by_matrix(np.asarray(mesh_obj.vertices), total_matrix) obj_transformed = copy.deepcopy(mesh_obj) obj_transformed.vertices = o3d.utility.Vector3dVector(transformed_vertices) voxel_size = 3 # 设置体素的大小,决定下采样的密度 # 将点云摆正和X轴平衡 obj_transformed_second,total_matrix = arrange_box_correctly(obj_transformed,voxel_size,total_matrix) total_matrix, min_bound, max_bound, ply_name, pcd_fix = get_new_bbox(obj_transformed_second,obj_name,voxel_size,is_downsample,total_matrix) del obj_transformed del obj_transformed_second # return total_matrix, z_max, min_bound, max_bound, ply_name, pcd_fix return total_matrix, z_max, min_bound, max_bound, ply_name def arrange_box_correctly(obj_transformed, voxel_size,total_matrix): vertices = np.asarray(obj_transformed.vertices) pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(vertices) # 降采样与特征计算 # pcd_downsampled = down_sample(pcd, voxel_size) # points = np.asarray(pcd_downsampled.points) points = np.asarray(pcd.points) cov = np.cov(points.T) center = obj_transformed.get_center() eigen_vals, eigen_vecs = np.linalg.eigh(cov) max_axis = eigen_vecs[:, np.argmax(eigen_vals)] # print("max_axis", max_axis) # 强制主方向向量X分量为正(指向右侧) if max_axis[0] < 0 or (max_axis[0] == 0 and max_axis[1] < 0): max_axis = -max_axis target_dir = np.array([1, 0]) # 目标方向为X正轴 current_dir = max_axis[:2] / np.linalg.norm(max_axis[:2]) dot_product = np.dot(current_dir, target_dir) # print("dot_product", dot_product) if dot_product < 0.8: # 阈值控制方向敏感性(建议0.6~0.9) max_axis = -max_axis # 强制翻转方向 # 计算旋转角度 angle_z = np.arctan2(max_axis[1], max_axis[0]) % (2 * np.pi) if max_axis[0] <= 0 and max_axis[1] <= 0: angle_z += np.pi R = o3d.geometry.get_rotation_matrix_from_axis_angle([0, 0, -angle_z]) T = np.eye(4) T[:3, :3] = R T[:3, 3] = center - R.dot(center) # 保持中心不变 obj_transformed.transform(T) total_matrix = T @ total_matrix return obj_transformed, total_matrix def get_new_bbox(obj_transformed_second,obj_name,voxel_size,is_downsample,total_matrix): # 计算点云的边界 points = np.asarray(obj_transformed_second.vertices) min_bound = np.min(points, axis=0) # 获取点云的最小边界 max_bound = np.max(points, axis=0) # 获取点云的最大边界 # print(f"get_new_bbox1: min_bound={min_bound}, max_bound={max_bound}") # 确保包围盒的Y坐标不低于0 min_bound[2] = max(min_bound[2], 0) # 确保Y坐标的最小值不低于0 # 重新计算包围盒的中心和半长轴 bbox_center = (min_bound + max_bound) / 2 # 计算包围盒的中心点 bbox_extent = (max_bound - min_bound) # 计算包围盒的半长轴(尺寸) # 创建包围盒,确保尺寸正确 new_bbox = o3d.geometry.OrientedBoundingBox(center=bbox_center, R=np.eye(3), # 旋转矩阵,默认没有旋转 extent=bbox_extent) # 获取包围盒的长、宽和高 x_length = round(bbox_extent[0],3) # X 方向的长 y_length = round(bbox_extent[1],3) # Y 方向的宽 z_length = round(bbox_extent[2],3) # Z 方向的高 bbox_points = np.array([ [min_bound[0], min_bound[1], min_bound[2]], [max_bound[0], min_bound[1], min_bound[2]], [max_bound[0], max_bound[1], min_bound[2]], [min_bound[0], max_bound[1], min_bound[2]], [min_bound[0], min_bound[1], max_bound[2]], [max_bound[0], min_bound[1], max_bound[2]], [max_bound[0], max_bound[1], max_bound[2]], [min_bound[0], max_bound[1], max_bound[2]] ]) first_corner = bbox_points[2] translation_vector = -first_corner obj_transformed_second.translate(translation_vector) T_trans = np.eye(4) T_trans[:3, 3] = translation_vector # 设置平移分量 [2,3](@ref) total_matrix = T_trans @ total_matrix # 矩阵乘法顺序:最新变换左乘[4,5](@ref) new_bbox.translate(translation_vector) vertices = np.asarray(obj_transformed_second.vertices) pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(vertices) if is_downsample: pcd_downsampled = down_sample(pcd, voxel_size, False) pcd_fix = pcd_downsampled else: pcd_fix = pcd min_bound = np.min(pcd.points, axis=0) # 获取点云的最小边界 max_bound = np.max(pcd.points, axis=0) # 获取点云的最大边界 # print(f"get_new_bbox2: min_bound={min_bound}, max_bound={max_bound}") if (not obj_name == ""): ply_print_pid = obj_name.replace(".obj","") ply_name = f"{ply_print_pid}={z_length}+{y_length}+{x_length}.ply" else: ply_name = "" return total_matrix, min_bound, max_bound, ply_name, pcd_fix class Platform: def __init__(self, width, depth, height): self.width = width self.depth = depth self.height = height self.placed_models = [] # 已放置的模型 self.unplaced_models = [] # 未能放置的模型 self.first_line = True self.remove_multiobj_name = "" def is_cross_border(self, x, y, z, model): mx, my, mz = model['dimensions'] return is_cross_border_c(x, y, z, mx, my, mz, self.width, self.depth, self.height) def check_multiobj_cross_pre(self, name, pre_model): if (pre_model==None): return if not is_same_obj(name, pre_model['name']): return self.unplaced_models.append(pre_model) if pre_model in self.placed_models: self.placed_models.remove(pre_model) if "pre_model" in pre_model: self.pre_model = pre_model["pre_model"] self.check_multiobj_cross_pre(name, self.pre_model) def check_multiobj_cross(self, model): if not is_multi_obj(model['name']): return False self.unplaced_models.append(model) if "pre_model" in model: self.pre_model = model["pre_model"] self.check_multiobj_cross_pre(model['name'], self.pre_model) return True def can_place(self, x, y, z, model, is_print=False): mx, my, mz = model['dimensions'] if self.is_cross_border(x, y, z, model): print(f"can_place False 1 cross_border {x}, {y}, {z}, {model}, {self.width}, {self.depth}, {self.height}") return False # 碰撞检测(正确逻辑与间距处理) for placed in self.placed_models: px, py, pz = placed['position'] pdx, pdy, pdz = placed['dimensions'] # 使用AABB碰撞检测算法[4](@ref) if (x > px - pdx - extend_dist_model_x and x - mx - extend_dist_model_x < px and y > py - pdy - extend_dist_model_y and y - my - extend_dist_model_y < py and z < pz + pdz and z + mz > pz): print("can_place False 2",False,model,x,y,z,px,pdx,extend_dist_model_x,py,pdy,extend_dist_model_y,my,pz,pdz,pz) return False return True def place_model(self, model, pre_model): mx, my, mz = model['dimensions'] if mz > self.height: self.unplaced_models.append(model) return False if is_same_obj(model['name'], self.remove_multiobj_name): self.unplaced_models.append(model) return False z = 0 if pre_model is None: if self.first_line: model['position'] = (mx + extend_dist_border_x_min, self.depth - extend_dist_border_y_max, 0) print(f"First Model {model['name']}") model['first_line'] = True else: model['position'] = (self.width - extend_dist_border_x_max, self.depth - extend_dist_border_y_max, 0) model['first_line'] = False print("model position1", model['name'], model['position']) self.placed_models.append(model) return True pre_px, pre_py, pre_pz = pre_model['position'] pre_mx, pre_my, pre_mz = pre_model['dimensions'] if self.first_line: px = pre_px + mx + extend_dist_model_x model['first_line'] = True else: px = pre_px - pre_mx - extend_dist_model_x model['first_line'] = False print(model['name'], "px", px, pre_px, pre_mx) reach_limit_x = False if self.first_line: if px > self.width: reach_limit_x = True else: if px - mx < 0: reach_limit_x = True if reach_limit_x: self.first_line = False px = self.width - extend_dist_border_x_max start_y = my + extend_dist_border_y_min final_y = self.depth print("reach_limit_x final_y1", model['name'], my, final_y, my, extend_dist_border_x_max, px) for y in range(start_y, final_y, +1): # print("y",y) if self.can_place(px, y, z, model, True)==False: y -= 1 if self.is_cross_border(px, y, z, model): print(f"cross border : {model['name']}") if self.check_multiobj_cross(model): self.remove_multiobj_name = model['name'] return False model['position'] = (px, y, z) print("model position2", model['name'], model['position']) self.placed_models.append(model) return True else: start_y = my + extend_dist_border_y_min final_y = self.depth # print("final_y2", model['name'], start_y, final_y, my, extend_dist_border_y_max, px) for y in range(start_y, final_y, +1): if self.can_place(px, y, z, model)==False: y -= 1 if self.is_cross_border(px, y, z, model): print(f"cross border : {model['name']}") if self.check_multiobj_cross(model): self.remove_multiobj_name = model['name'] return False model['position'] = (px, y, z) print("model position2", model['name'], model['position']) self.placed_models.append(model) return True if 'position' in model: print("model position3", model['name'], model['position']) else: print("model position3 no exist position", model['name']) self.unplaced_models.append(model) return False def arrange_models(self, models): """对所有模型进行排布(单层)""" print("⚠️ 单层放置模式:所有模型只能放在平台底面(Z=0)") # 按高度和面积排序,优先放大模型 models = sorted(models, key=lambda m: (-m['dimensions'][2], -m['dimensions'][0] * m['dimensions'][1])) self.pre_model = None for model in models: print(f"arrange_models {model['name']}") pre_model_temp = self.pre_model if self.place_model(model, self.pre_model): self.pre_model = model model["pre_model"] = pre_model_temp def print_results(self): """打印排布结果""" print("Placed Models:") for model in self.placed_models: print(f" - {model['name']} at {model['position']} with dimensions {model['dimensions']}") print("Unplaced Models:") for model in self.unplaced_models: print(f" - {model['name']} with dimensions {model['dimensions']}") def get_result(self): return self.placed_models, self.unplaced_models # -------------------------- 结束:bbox -------------------------- if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--obj_path", type=str, required=True, help="batchobj_path_id") args = parser.parse_args() obj_path = args.obj_path max, z = get_lowest_position_of_z_ext(obj_path)