import os import shutil import time import random import matplotlib.pyplot as plt import open3d as o3d import numpy as np # ply_read_path="/data/datasets_20t/type_setting_test_data/print_bounds_compact_data/88884_253283_P65951_6cm_x1=7.811+11.043+25.699.ply" # # 读取点云 # pcd = o3d.io.read_point_cloud(ply_read_path) # # # 获取点云的点数据 # points = np.asarray(pcd.points) # # # 计算质心 # centroid = np.mean(points, axis=0) # # # 计算 Y 轴最小值 # min_y_value = np.min(points[:, 1]) # Y 轴最小值 # max_y_value = np.max(points[:, 1]) # # # 计算 X 轴最小值 # min_x_value = np.min(points[:, 0]) # X 轴最小值 # # print(f'min_x_value{min_x_value}') # min_x_value -385.08287729332403 # ply_read_path="/data/datasets_20t/type_setting_test_data/print_bounds_compact_data/456450_260316_P65976_2.66cm_x1=21.778+22.904+26.333.ply" # 读取点云 pcd = o3d.io.read_point_cloud(ply_read_path) # 获取点云的点数据 points = np.asarray(pcd.points) # 计算质心 centroid = np.mean(points, axis=0) # 计算 Y 轴最小值 min_y_value = np.min(points[:, 1]) # Y 轴最小值 max_y_value = np.max(points[:, 1]) # 计算 X 轴最小值 min_x_value = np.min(points[:, 0]) # X 轴最小值 print(f'min_x_value{min_x_value}') # min_x_value -385.08287729332403 print(f'min_y_value{min_y_value}') # -339