You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 

1521 lines
56 KiB

import yaml
import oss2
import os
from tqdm import tqdm
# from utils.log_utils import log_execution
import os
from pathlib import Path
import numpy as np
import collections
import struct
import math
import os
import argparse
from config import print_factory_type_dir
from general import is_use_debug_oss
CameraModel = collections.namedtuple(
"CameraModel", ["model_id", "model_name", "num_params"]
)
Camera = collections.namedtuple("Camera", ["id", "model", "width", "height", "params"])
BaseImage = collections.namedtuple(
"Image", ["id", "qvec", "tvec", "camera_id", "name", "xys", "point3D_ids"]
)
Point3D = collections.namedtuple(
"Point3D", ["id", "xyz", "rgb", "error", "image_ids", "point2D_idxs"]
)
CAMERA_MODELS = {
CameraModel(model_id=0, model_name="SIMPLE_PINHOLE", num_params=3),
CameraModel(model_id=1, model_name="PINHOLE", num_params=4),
CameraModel(model_id=2, model_name="SIMPLE_RADIAL", num_params=4),
CameraModel(model_id=3, model_name="RADIAL", num_params=5),
CameraModel(model_id=4, model_name="OPENCV", num_params=8),
CameraModel(model_id=5, model_name="OPENCV_FISHEYE", num_params=8),
CameraModel(model_id=6, model_name="FULL_OPENCV", num_params=12),
CameraModel(model_id=7, model_name="FOV", num_params=5),
CameraModel(model_id=8, model_name="SIMPLE_RADIAL_FISHEYE", num_params=4),
CameraModel(model_id=9, model_name="RADIAL_FISHEYE", num_params=5),
CameraModel(model_id=10, model_name="THIN_PRISM_FISHEYE", num_params=12),
}
CAMERA_MODEL_IDS = dict(
[(camera_model.model_id, camera_model) for camera_model in CAMERA_MODELS]
)
CAMERA_MODEL_NAMES = dict(
[(camera_model.model_name, camera_model) for camera_model in CAMERA_MODELS]
)
def qvec2rotmat(qvec):
return np.array(
[
[
1 - 2 * qvec[2] ** 2 - 2 * qvec[3] ** 2,
2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3],
2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2],
],
[
2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3],
1 - 2 * qvec[1] ** 2 - 2 * qvec[3] ** 2,
2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1],
],
[
2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2],
2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1],
1 - 2 * qvec[1] ** 2 - 2 * qvec[2] ** 2,
],
]
)
def rotmat2qvec(R):
Rxx, Ryx, Rzx, Rxy, Ryy, Rzy, Rxz, Ryz, Rzz = R.flat
K = (
np.array(
[
[Rxx - Ryy - Rzz, 0, 0, 0],
[Ryx + Rxy, Ryy - Rxx - Rzz, 0, 0],
[Rzx + Rxz, Rzy + Ryz, Rzz - Rxx - Ryy, 0],
[Ryz - Rzy, Rzx - Rxz, Rxy - Ryx, Rxx + Ryy + Rzz],
]
)
/ 3.0
)
eigvals, eigvecs = np.linalg.eigh(K)
qvec = eigvecs[[3, 0, 1, 2], np.argmax(eigvals)]
if qvec[0] < 0:
qvec *= -1
return qvec
class Image(BaseImage):
def qvec2rotmat(self):
return qvec2rotmat(self.qvec)
def read_next_bytes(fid, num_bytes, format_char_sequence, endian_character="<"):
"""Read and unpack the next bytes from a binary file.
:param fid:
:param num_bytes: Sum of combination of {2, 4, 8}, e.g. 2, 6, 16, 30, etc.
:param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}.
:param endian_character: Any of {@, =, <, >, !}
:return: Tuple of read and unpacked values.
"""
data = fid.read(num_bytes)
return struct.unpack(endian_character + format_char_sequence, data)
def read_points3D_text(path):
"""
see: src/base/reconstruction.cc
void Reconstruction::ReadPoints3DText(const std::string& path)
void Reconstruction::WritePoints3DText(const std::string& path)
"""
xyzs = None
rgbs = None
errors = None
num_points = 0
with open(path, "r") as fid:
while True:
line = fid.readline()
if not line:
break
line = line.strip()
if len(line) > 0 and line[0] != "#":
num_points += 1
xyzs = np.empty((num_points, 3))
rgbs = np.empty((num_points, 3))
errors = np.empty((num_points, 1))
count = 0
with open(path, "r") as fid:
while True:
line = fid.readline()
if not line:
break
line = line.strip()
if len(line) > 0 and line[0] != "#":
elems = line.split()
xyz = np.array(tuple(map(float, elems[1:4])))
rgb = np.array(tuple(map(int, elems[4:7])))
error = np.array(float(elems[7]))
xyzs[count] = xyz
rgbs[count] = rgb
errors[count] = error
count += 1
return xyzs, rgbs, errors
def read_points3D_binary(path_to_model_file):
"""
see: src/base/reconstruction.cc
void Reconstruction::ReadPoints3DBinary(const std::string& path)
void Reconstruction::WritePoints3DBinary(const std::string& path)
"""
with open(path_to_model_file, "rb") as fid:
num_points = read_next_bytes(fid, 8, "Q")[0]
xyzs = np.empty((num_points, 3))
rgbs = np.empty((num_points, 3))
errors = np.empty((num_points, 1))
for p_id in range(num_points):
binary_point_line_properties = read_next_bytes(
fid, num_bytes=43, format_char_sequence="QdddBBBd"
)
xyz = np.array(binary_point_line_properties[1:4])
rgb = np.array(binary_point_line_properties[4:7])
error = np.array(binary_point_line_properties[7])
track_length = read_next_bytes(fid, num_bytes=8, format_char_sequence="Q")[
0
]
track_elems = read_next_bytes(
fid,
num_bytes=8 * track_length,
format_char_sequence="ii" * track_length,
)
xyzs[p_id] = xyz
rgbs[p_id] = rgb
errors[p_id] = error
return xyzs, rgbs, errors
def read_intrinsics_text(path):
"""
Taken from https://github.com/colmap/colmap/blob/dev/scripts/python/read_write_model.py
"""
cameras = {}
with open(path, "r") as fid:
while True:
line = fid.readline()
if not line:
break
line = line.strip()
if len(line) > 0 and line[0] != "#":
elems = line.split()
camera_id = int(elems[0])
model = elems[1]
assert (
model == "PINHOLE"
), "While the loader support other types, the rest of the code assumes PINHOLE"
width = int(elems[2])
height = int(elems[3])
params = np.array(tuple(map(float, elems[4:])))
cameras[camera_id] = Camera(
id=camera_id, model=model, width=width, height=height, params=params
)
return cameras
def read_extrinsics_binary(path_to_model_file):
"""
see: src/base/reconstruction.cc
void Reconstruction::ReadImagesBinary(const std::string& path)
void Reconstruction::WriteImagesBinary(const std::string& path)
"""
images = {}
with open(path_to_model_file, "rb") as fid:
num_reg_images = read_next_bytes(fid, 8, "Q")[0]
for _ in range(num_reg_images):
binary_image_properties = read_next_bytes(
fid, num_bytes=64, format_char_sequence="idddddddi"
)
image_id = binary_image_properties[0]
qvec = np.array(binary_image_properties[1:5])
tvec = np.array(binary_image_properties[5:8])
camera_id = binary_image_properties[8]
image_name = ""
current_char = read_next_bytes(fid, 1, "c")[0]
while current_char != b"\x00": # look for the ASCII 0 entry
image_name += current_char.decode("utf-8")
current_char = read_next_bytes(fid, 1, "c")[0]
num_points2D = read_next_bytes(fid, num_bytes=8, format_char_sequence="Q")[
0
]
x_y_id_s = read_next_bytes(
fid,
num_bytes=24 * num_points2D,
format_char_sequence="ddq" * num_points2D,
)
xys = np.column_stack(
[tuple(map(float, x_y_id_s[0::3])), tuple(map(float, x_y_id_s[1::3]))]
)
point3D_ids = np.array(tuple(map(int, x_y_id_s[2::3])))
images[image_id] = Image(
id=image_id,
qvec=qvec,
tvec=tvec,
camera_id=camera_id,
name=image_name,
xys=xys,
point3D_ids=point3D_ids,
)
return images
def read_intrinsics_binary(path_to_model_file):
"""
see: src/base/reconstruction.cc
void Reconstruction::WriteCamerasBinary(const std::string& path)
void Reconstruction::ReadCamerasBinary(const std::string& path)
"""
cameras = {}
with open(path_to_model_file, "rb") as fid:
num_cameras = read_next_bytes(fid, 8, "Q")[0]
for _ in range(num_cameras):
camera_properties = read_next_bytes(
fid, num_bytes=24, format_char_sequence="iiQQ"
)
camera_id = camera_properties[0]
model_id = camera_properties[1]
model_name = CAMERA_MODEL_IDS[camera_properties[1]].model_name
width = camera_properties[2]
height = camera_properties[3]
num_params = CAMERA_MODEL_IDS[model_id].num_params
params = read_next_bytes(
fid, num_bytes=8 * num_params, format_char_sequence="d" * num_params
)
cameras[camera_id] = Camera(
id=camera_id,
model=model_name,
width=width,
height=height,
params=np.array(params),
)
assert len(cameras) == num_cameras
return cameras
def focal2fov(focal, pixels):
return 2 * math.atan(pixels / (2 * focal))
def read_extrinsics_text(path):
"""
Taken from https://github.com/colmap/colmap/blob/dev/scripts/python/read_write_model.py
"""
images = {}
with open(path, "r") as fid:
while True:
line = fid.readline()
if not line:
break
line = line.strip()
if len(line) > 0 and line[0] != "#":
elems = line.split()
image_id = int(elems[0])
qvec = np.array(tuple(map(float, elems[1:5])))
tvec = np.array(tuple(map(float, elems[5:8])))
camera_id = int(elems[8])
image_name = elems[9]
elems = fid.readline().split()
xys = np.column_stack(
[tuple(map(float, elems[0::3])), tuple(map(float, elems[1::3]))]
)
point3D_ids = np.array(tuple(map(int, elems[2::3])))
images[image_id] = Image(
id=image_id,
qvec=qvec,
tvec=tvec,
camera_id=camera_id,
name=image_name,
xys=xys,
point3D_ids=point3D_ids,
)
return images
def read_colmap_bin_array(path):
"""
Taken from https://github.com/colmap/colmap/blob/dev/scripts/python/read_dense.py
:param path: path to the colmap binary file.
:return: nd array with the floating point values in the value
"""
with open(path, "rb") as fid:
width, height, channels = np.genfromtxt(
fid, delimiter="&", max_rows=1, usecols=(0, 1, 2), dtype=int
)
fid.seek(0)
num_delimiter = 0
byte = fid.read(1)
while True:
if byte == b"&":
num_delimiter += 1
if num_delimiter >= 3:
break
byte = fid.read(1)
array = np.fromfile(fid, np.float32)
array = array.reshape((width, height, channels), order="F")
return np.transpose(array, (1, 0, 2)).squeeze()
def read_next_bytes(fid, num_bytes, format_char_sequence, endian_character="<"):
"""Read and unpack the next bytes from a binary file.
:param fid:
:param num_bytes: Sum of combination of {2, 4, 8}, e.g. 2, 6, 16, 30, etc.
:param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}.
:param endian_character: Any of {@, =, <, >, !}
:return: Tuple of read and unpacked values.
"""
data = fid.read(num_bytes)
return struct.unpack(endian_character + format_char_sequence, data)
def write_next_bytes(fid, data, format_char_sequence, endian_character="<"):
"""pack and write to a binary file.
:param fid:
:param data: data to send, if multiple elements are sent at the same time,
they should be encapsuled either in a list or a tuple
:param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}.
should be the same length as the data list or tuple
:param endian_character: Any of {@, =, <, >, !}
"""
if isinstance(data, (list, tuple)):
bytes = struct.pack(endian_character + format_char_sequence, *data)
else:
bytes = struct.pack(endian_character + format_char_sequence, data)
fid.write(bytes)
def read_cameras_text(path):
"""
see: src/colmap/scene/reconstruction.cc
void Reconstruction::WriteCamerasText(const std::string& path)
void Reconstruction::ReadCamerasText(const std::string& path)
"""
cameras = {}
with open(path, "r") as fid:
while True:
line = fid.readline()
if not line:
break
line = line.strip()
if len(line) > 0 and line[0] != "#":
elems = line.split()
camera_id = int(elems[0])
model = elems[1]
width = int(elems[2])
height = int(elems[3])
params = np.array(tuple(map(float, elems[4:])))
cameras[camera_id] = Camera(
id=camera_id,
model=model,
width=width,
height=height,
params=params,
)
return cameras
def read_cameras_binary(path_to_model_file):
"""
see: src/colmap/scene/reconstruction.cc
void Reconstruction::WriteCamerasBinary(const std::string& path)
void Reconstruction::ReadCamerasBinary(const std::string& path)
"""
cameras = {}
with open(path_to_model_file, "rb") as fid:
num_cameras = read_next_bytes(fid, 8, "Q")[0]
for _ in range(num_cameras):
camera_properties = read_next_bytes(
fid, num_bytes=24, format_char_sequence="iiQQ"
)
camera_id = camera_properties[0]
model_id = camera_properties[1]
model_name = CAMERA_MODEL_IDS[camera_properties[1]].model_name
width = camera_properties[2]
height = camera_properties[3]
num_params = CAMERA_MODEL_IDS[model_id].num_params
params = read_next_bytes(
fid,
num_bytes=8 * num_params,
format_char_sequence="d" * num_params,
)
cameras[camera_id] = Camera(
id=camera_id,
model=model_name,
width=width,
height=height,
params=np.array(params),
)
assert len(cameras) == num_cameras
return cameras
def write_cameras_text(cameras, path):
"""
see: src/colmap/scene/reconstruction.cc
void Reconstruction::WriteCamerasText(const std::string& path)
void Reconstruction::ReadCamerasText(const std::string& path)
"""
HEADER = (
"# Camera list with one line of data per camera:\n"
+ "# CAMERA_ID, MODEL, WIDTH, HEIGHT, PARAMS[]\n"
+ "# Number of cameras: {}\n".format(len(cameras))
)
with open(path, "w") as fid:
fid.write(HEADER)
for _, cam in cameras.items():
to_write = [cam.id, cam.model, cam.width, cam.height, *cam.params]
line = " ".join([str(elem) for elem in to_write])
fid.write(line + "\n")
def write_cameras_binary(cameras, path_to_model_file):
"""
see: src/colmap/scene/reconstruction.cc
void Reconstruction::WriteCamerasBinary(const std::string& path)
void Reconstruction::ReadCamerasBinary(const std::string& path)
"""
with open(path_to_model_file, "wb") as fid:
write_next_bytes(fid, len(cameras), "Q")
for _, cam in cameras.items():
model_id = CAMERA_MODEL_NAMES[cam.model].model_id
camera_properties = [cam.id, model_id, cam.width, cam.height]
write_next_bytes(fid, camera_properties, "iiQQ")
for p in cam.params:
write_next_bytes(fid, float(p), "d")
return cameras
def read_images_text(path):
"""
see: src/colmap/scene/reconstruction.cc
void Reconstruction::ReadImagesText(const std::string& path)
void Reconstruction::WriteImagesText(const std::string& path)
"""
images = {}
with open(path, "r") as fid:
while True:
line = fid.readline()
if not line:
break
line = line.strip()
if len(line) > 0 and line[0] != "#":
elems = line.split()
image_id = int(elems[0])
qvec = np.array(tuple(map(float, elems[1:5])))
tvec = np.array(tuple(map(float, elems[5:8])))
camera_id = int(elems[8])
image_name = elems[9]
elems = fid.readline().split()
xys = np.column_stack(
[
tuple(map(float, elems[0::3])),
tuple(map(float, elems[1::3])),
]
)
point3D_ids = np.array(tuple(map(int, elems[2::3])))
images[image_id] = Image(
id=image_id,
qvec=qvec,
tvec=tvec,
camera_id=camera_id,
name=image_name,
xys=xys,
point3D_ids=point3D_ids,
)
return images
def read_images_binary(path_to_model_file):
"""
see: src/colmap/scene/reconstruction.cc
void Reconstruction::ReadImagesBinary(const std::string& path)
void Reconstruction::WriteImagesBinary(const std::string& path)
"""
images = {}
with open(path_to_model_file, "rb") as fid:
num_reg_images = read_next_bytes(fid, 8, "Q")[0]
for _ in range(num_reg_images):
binary_image_properties = read_next_bytes(
fid, num_bytes=64, format_char_sequence="idddddddi"
)
image_id = binary_image_properties[0]
qvec = np.array(binary_image_properties[1:5])
tvec = np.array(binary_image_properties[5:8])
camera_id = binary_image_properties[8]
binary_image_name = b""
current_char = read_next_bytes(fid, 1, "c")[0]
while current_char != b"\x00": # look for the ASCII 0 entry
binary_image_name += current_char
current_char = read_next_bytes(fid, 1, "c")[0]
image_name = binary_image_name.decode("utf-8")
num_points2D = read_next_bytes(fid, num_bytes=8, format_char_sequence="Q")[
0
]
x_y_id_s = read_next_bytes(
fid,
num_bytes=24 * num_points2D,
format_char_sequence="ddq" * num_points2D,
)
xys = np.column_stack(
[
tuple(map(float, x_y_id_s[0::3])),
tuple(map(float, x_y_id_s[1::3])),
]
)
point3D_ids = np.array(tuple(map(int, x_y_id_s[2::3])))
images[image_id] = Image(
id=image_id,
qvec=qvec,
tvec=tvec,
camera_id=camera_id,
name=image_name,
xys=xys,
point3D_ids=point3D_ids,
)
return images
def write_images_text(images, path):
"""
see: src/colmap/scene/reconstruction.cc
void Reconstruction::ReadImagesText(const std::string& path)
void Reconstruction::WriteImagesText(const std::string& path)
"""
if len(images) == 0:
mean_observations = 0
else:
mean_observations = sum(
(len(img.point3D_ids) for _, img in images.items())
) / len(images)
HEADER = (
"# Image list with two lines of data per image:\n"
+ "# IMAGE_ID, QW, QX, QY, QZ, TX, TY, TZ, CAMERA_ID, NAME\n"
+ "# POINTS2D[] as (X, Y, POINT3D_ID)\n"
+ "# Number of images: {}, mean observations per image: {}\n".format(
len(images), mean_observations
)
)
with open(path, "w") as fid:
fid.write(HEADER)
for _, img in images.items():
image_header = [
img.id,
*img.qvec,
*img.tvec,
img.camera_id,
img.name,
]
first_line = " ".join(map(str, image_header))
fid.write(first_line + "\n")
points_strings = []
for xy, point3D_id in zip(img.xys, img.point3D_ids):
points_strings.append(" ".join(map(str, [*xy, point3D_id])))
fid.write(" ".join(points_strings) + "\n")
def write_images_binary(images, path_to_model_file):
"""
see: src/colmap/scene/reconstruction.cc
void Reconstruction::ReadImagesBinary(const std::string& path)
void Reconstruction::WriteImagesBinary(const std::string& path)
"""
with open(path_to_model_file, "wb") as fid:
write_next_bytes(fid, len(images), "Q")
for _, img in images.items():
write_next_bytes(fid, img.id, "i")
write_next_bytes(fid, img.qvec.tolist(), "dddd")
write_next_bytes(fid, img.tvec.tolist(), "ddd")
write_next_bytes(fid, img.camera_id, "i")
for char in img.name:
write_next_bytes(fid, char.encode("utf-8"), "c")
write_next_bytes(fid, b"\x00", "c")
write_next_bytes(fid, len(img.point3D_ids), "Q")
for xy, p3d_id in zip(img.xys, img.point3D_ids):
write_next_bytes(fid, [*xy, p3d_id], "ddq")
def read_points3D_text(path):
"""
see: src/colmap/scene/reconstruction.cc
void Reconstruction::ReadPoints3DText(const std::string& path)
void Reconstruction::WritePoints3DText(const std::string& path)
"""
points3D = {}
with open(path, "r") as fid:
while True:
line = fid.readline()
if not line:
break
line = line.strip()
if len(line) > 0 and line[0] != "#":
elems = line.split()
point3D_id = int(elems[0])
xyz = np.array(tuple(map(float, elems[1:4])))
rgb = np.array(tuple(map(int, elems[4:7])))
error = float(elems[7])
image_ids = np.array(tuple(map(int, elems[8::2])))
point2D_idxs = np.array(tuple(map(int, elems[9::2])))
points3D[point3D_id] = Point3D(
id=point3D_id,
xyz=xyz,
rgb=rgb,
error=error,
image_ids=image_ids,
point2D_idxs=point2D_idxs,
)
return points3D
def read_points3D_binary(path_to_model_file):
"""
see: src/colmap/scene/reconstruction.cc
void Reconstruction::ReadPoints3DBinary(const std::string& path)
void Reconstruction::WritePoints3DBinary(const std::string& path)
"""
points3D = {}
with open(path_to_model_file, "rb") as fid:
num_points = read_next_bytes(fid, 8, "Q")[0]
for _ in range(num_points):
binary_point_line_properties = read_next_bytes(
fid, num_bytes=43, format_char_sequence="QdddBBBd"
)
point3D_id = binary_point_line_properties[0]
xyz = np.array(binary_point_line_properties[1:4])
rgb = np.array(binary_point_line_properties[4:7])
error = np.array(binary_point_line_properties[7])
track_length = read_next_bytes(fid, num_bytes=8, format_char_sequence="Q")[
0
]
track_elems = read_next_bytes(
fid,
num_bytes=8 * track_length,
format_char_sequence="ii" * track_length,
)
image_ids = np.array(tuple(map(int, track_elems[0::2])))
point2D_idxs = np.array(tuple(map(int, track_elems[1::2])))
points3D[point3D_id] = Point3D(
id=point3D_id,
xyz=xyz,
rgb=rgb,
error=error,
image_ids=image_ids,
point2D_idxs=point2D_idxs,
)
return points3D
def write_points3D_text(points3D, path):
"""
see: src/colmap/scene/reconstruction.cc
void Reconstruction::ReadPoints3DText(const std::string& path)
void Reconstruction::WritePoints3DText(const std::string& path)
"""
if len(points3D) == 0:
mean_track_length = 0
else:
mean_track_length = sum(
(len(pt.image_ids) for _, pt in points3D.items())
) / len(points3D)
HEADER = (
"# 3D point list with one line of data per point:\n"
+ "# POINT3D_ID, X, Y, Z, R, G, B, ERROR, TRACK[] as (IMAGE_ID, POINT2D_IDX)\n"
+ "# Number of points: {}, mean track length: {}\n".format(
len(points3D), mean_track_length
)
)
with open(path, "w") as fid:
fid.write(HEADER)
for _, pt in points3D.items():
point_header = [pt.id, *pt.xyz, *pt.rgb, pt.error]
fid.write(" ".join(map(str, point_header)) + " ")
track_strings = []
for image_id, point2D in zip(pt.image_ids, pt.point2D_idxs):
track_strings.append(" ".join(map(str, [image_id, point2D])))
fid.write(" ".join(track_strings) + "\n")
def write_points3D_binary(points3D, path_to_model_file):
"""
see: src/colmap/scene/reconstruction.cc
void Reconstruction::ReadPoints3DBinary(const std::string& path)
void Reconstruction::WritePoints3DBinary(const std::string& path)
"""
with open(path_to_model_file, "wb") as fid:
write_next_bytes(fid, len(points3D), "Q")
for _, pt in points3D.items():
write_next_bytes(fid, pt.id, "Q")
write_next_bytes(fid, pt.xyz.tolist(), "ddd")
write_next_bytes(fid, pt.rgb.tolist(), "BBB")
write_next_bytes(fid, pt.error, "d")
track_length = pt.image_ids.shape[0]
write_next_bytes(fid, track_length, "Q")
for image_id, point2D_id in zip(pt.image_ids, pt.point2D_idxs):
write_next_bytes(fid, [image_id, point2D_id], "ii")
def detect_model_format(path, ext):
if (
os.path.isfile(os.path.join(path, "cameras" + ext))
and os.path.isfile(os.path.join(path, "images" + ext))
and os.path.isfile(os.path.join(path, "points3D" + ext))
):
print("Detected model format: '" + ext + "'")
return True
return False
def read_model(path, ext=""):
# try to detect the extension automatically
if ext == "":
if detect_model_format(path, ".bin"):
ext = ".bin"
elif detect_model_format(path, ".txt"):
ext = ".txt"
else:
print("Provide model format: '.bin' or '.txt'")
return
if ext == ".txt":
cameras = read_cameras_text(os.path.join(path, "cameras" + ext))
images = read_images_text(os.path.join(path, "images" + ext))
points3D = read_points3D_text(os.path.join(path, "points3D") + ext)
else:
cameras = read_cameras_binary(os.path.join(path, "cameras" + ext))
images = read_images_binary(os.path.join(path, "images" + ext))
points3D = read_points3D_binary(os.path.join(path, "points3D") + ext)
return cameras, images, points3D
def write_model(cameras, images, points3D, path, ext=".bin"):
if ext == ".txt":
write_cameras_text(cameras, os.path.join(path, "cameras" + ext))
write_images_text(images, os.path.join(path, "images" + ext))
write_points3D_text(points3D, os.path.join(path, "points3D") + ext)
else:
write_cameras_binary(cameras, os.path.join(path, "cameras" + ext))
write_images_binary(images, os.path.join(path, "images" + ext))
write_points3D_binary(points3D, os.path.join(path, "points3D") + ext)
return cameras, images, points3D
def qvec2rotmat(qvec):
return np.array(
[
[
1 - 2 * qvec[2] ** 2 - 2 * qvec[3] ** 2,
2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3],
2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2],
],
[
2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3],
1 - 2 * qvec[1] ** 2 - 2 * qvec[3] ** 2,
2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1],
],
[
2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2],
2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1],
1 - 2 * qvec[1] ** 2 - 2 * qvec[2] ** 2,
],
]
)
def rotmat2qvec(R):
Rxx, Ryx, Rzx, Rxy, Ryy, Rzy, Rxz, Ryz, Rzz = R.flat
K = (
np.array(
[
[Rxx - Ryy - Rzz, 0, 0, 0],
[Ryx + Rxy, Ryy - Rxx - Rzz, 0, 0],
[Rzx + Rxz, Rzy + Ryz, Rzz - Rxx - Ryy, 0],
[Ryz - Rzy, Rzx - Rxz, Rxy - Ryx, Rxx + Ryy + Rzz],
]
)
/ 3.0
)
eigvals, eigvecs = np.linalg.eigh(K)
qvec = eigvecs[[3, 0, 1, 2], np.argmax(eigvals)]
if qvec[0] < 0:
qvec *= -1
return qvec
def get_oss_client(cfg_path):
with open(os.path.expanduser(cfg_path), "r") as config:
cfg = yaml.safe_load(config)
AccessKeyId_down = cfg["run"]["down"]["AccessKeyId"]
AccessKeySecret_down = cfg["run"]["down"]["AccessKeySecret"]
Endpoint_down = cfg["run"]["down"]["Endpoint"]
Bucket_down = cfg["run"]["down"]["Bucket"]
oss_client = oss2.Bucket(
oss2.Auth(AccessKeyId_down, AccessKeySecret_down), Endpoint_down, Bucket_down
)
return oss_client
class DataTransfer:
'''
数据传输类
'''
def __init__(self, local_path: str, oss_path: str, oss_client: oss2.Bucket):
'''
local_path: 本地输出路径
oss_path: oss路径
oss_client: oss客户端
'''
self.local_path = local_path
self.oss_path = oss_path.lstrip('/')
self.oss_client = oss_client
# self.description = description
# @log_execution(self.description)
def download_data(self):
"""
从 OSS 下载数据到本地,保持原有目录结构
"""
# 列出所有对象
objects = []
prefix = self.oss_path.lstrip('/') # 移除开头的 '/' 以匹配 OSS 格式
for obj in oss2.ObjectIterator(self.oss_client, prefix=prefix):
if obj.key != prefix: # 跳过目录本身
objects.append(obj.key)
# 下载所有文件,添加进度条
for obj_key in tqdm(objects, desc="下载进度"):
if obj_key.endswith('/'):
continue
if "printId" in obj_key:
continue
# 计算相对路径
rel_path = obj_key[len(prefix):].lstrip('/')
# 构建本地完整路径
local_path = os.path.join(self.local_path, rel_path)
# 创建必要的目录
os.makedirs(os.path.dirname(local_path), exist_ok=True)
# 下载文件
self.oss_client.get_object_to_file(obj_key, local_path)
print("download_data local_path=" + local_path)
order_id: str
pid: str
model_height: str
def download_data_rename_json(self, json_model_info):
"""
从 OSS 下载数据到本地,保持原有目录结构
"""
# 列出所有对象
objects = []
prefix = self.oss_path.lstrip('/') # 移除开头的 '/' 以匹配 OSS 格式
for obj in oss2.ObjectIterator(self.oss_client, prefix=prefix):
if obj.key != prefix: # 跳过目录本身
objects.append(obj.key)
# 下载所有文件,添加进度条
for obj_key in tqdm(objects, desc="下载进度"):
if obj_key.endswith('/'):
continue
if "printId" in obj_key:
continue
# 计算相对路径
rel_path = obj_key[len(prefix):].lstrip('/')
file_dir, file_name = os.path.split(rel_path)
file_base, file_ext = os.path.splitext(file_name)
# 根据文件后缀名进行重命名
if file_ext.lower() in ['.mtl', '.jpg', '.jpeg', '.png']:
# 对于.mtl和图片文件,在原名前加order_id
new_file_name = f"{json_model_info.order_id}_{file_name}"
# new_file_name = file_name
elif file_ext.lower() == '.obj':
# 对于.obj文件,完全重命名
new_file_name = f"{json_model_info.obj_name}"
else:
# 其他文件类型保持原名
new_file_name = file_name
print("new_file_name=", new_file_name)
# 构建新的相对路径
if file_dir: # 如果有子目录
new_rel_path = os.path.join(file_dir, new_file_name)
else:
new_rel_path = new_file_name
# 构建本地完整路径
local_path = os.path.join(self.local_path, new_rel_path)
# 创建必要的目录
os.makedirs(os.path.dirname(local_path), exist_ok=True)
# 下载文件
self.oss_client.get_object_to_file(obj_key, local_path)
if file_ext == '.obj': # 10MB以上
try:
# 使用临时文件避免内存问题 [8](@ref)
temp_path = local_path + '.tmp'
with open(local_path, 'r', encoding='utf-8') as f_in, \
open(temp_path, 'w', encoding='utf-8') as f_out:
mtllib_modified = False
for line in f_in:
if not mtllib_modified and line.strip().startswith('mtllib '):
parts = line.split(' ', 1)
if len(parts) > 1:
old_mtl_name = parts[1].strip()
new_mtl_name = f"{json_model_info.order_id}_{old_mtl_name}"
f_out.write(f"mtllib {new_mtl_name}\n")
mtllib_modified = True
continue
f_out.write(line)
os.replace(temp_path, local_path) # 原子性替换
except IOError as e:
print(f"处理大文件 {local_path} 时出错: {e}")
if os.path.exists(temp_path):
os.remove(temp_path)
# 优化后的.obj文件处理逻辑
if file_ext == '.mtl':
try:
# 使用更高效的文件读取方式 [6,8](@ref)
with open(local_path, 'r', encoding='utf-8') as f:
content = f.read()
# 使用字符串方法直接查找和替换,避免不必要的循环 [9](@ref)
lines = content.split('\n')
mtllib_modified = False
for i, line in enumerate(lines):
stripped_line = line.strip()
if not mtllib_modified and stripped_line.startswith('map_Kd '):
# 更高效的分割方式 [9](@ref)
parts = line.split(' ', 1)
if len(parts) > 1:
old_name = parts[1].strip()
new_name = f"{json_model_info.order_id}_{old_name}"
lines[i] = f"map_Kd {new_name}"
mtllib_modified = True
print(f"已更新材质库引用: {old_name} -> {new_name}")
break # 找到第一个后立即退出
# 批量写入,减少I/O操作 [6](@ref)
with open(local_path, 'w', encoding='utf-8') as f:
f.write('\n'.join(lines))
except IOError as e:
print(f"处理文件 {local_path} 时出错: {e}")
except UnicodeDecodeError as e:
print(f"文件编码错误 {local_path}: {e}")
print(f"下载文件: {obj_key} -> {local_path}")
def download_data_rename_batch(self, batch_model_info):
"""
从 OSS 下载数据到本地,保持原有目录结构
"""
# 列出所有对象
objects = []
prefix = self.oss_path.lstrip('/') # 移除开头的 '/' 以匹配 OSS 格式
prefix_exists = False
for obj in oss2.ObjectIterator(self.oss_client, prefix=prefix):
prefix_exists = True
if obj.key != prefix: # 跳过目录本身
objects.append(obj.key)
print(f"obj.key={obj.key}")
if not prefix_exists:
print(f"前缀 '{prefix}' 下没有找到任何文件或目录。")
return False
else:
print(f"前缀 '{prefix}' 存在,共找到 {len(objects)} 个对象。")
# 下载所有文件,添加进度条
for obj_key in tqdm(objects, desc="下载进度"):
if obj_key.endswith('/'):
print("下载 endswith('/'")
continue
if "printId" in obj_key:
print(f"下载 in obj_key")
continue
# 计算相对路径
rel_path = obj_key[len(prefix):].lstrip('/')
file_dir, file_name = os.path.split(rel_path)
file_base, file_ext = os.path.splitext(file_name)
# 根据文件后缀名进行重命名
if file_ext.lower() in ['.mtl', '.jpg', '.jpeg', '.png']:
# 对于.mtl和图片文件,在原名前加order_id
new_file_name = f"{batch_model_info.order_id}_{file_name}"
# new_file_name = file_name
elif file_ext.lower() == '.obj':
# 对于.obj文件,完全重命名
new_file_name = f"{batch_model_info.order_id}_{batch_model_info.pid}_P{batch_model_info.print_order_id}_{batch_model_info.model_size}{file_ext}"
else:
# 其他文件类型保持原名
new_file_name = file_name
# 构建新的相对路径
if file_dir: # 如果有子目录
new_rel_path = os.path.join(file_dir, new_file_name)
else:
new_rel_path = new_file_name
# 构建本地完整路径
local_path = os.path.join(self.local_path, new_rel_path)
# 创建必要的目录
os.makedirs(os.path.dirname(local_path), exist_ok=True)
# 下载文件
self.oss_client.get_object_to_file(obj_key, local_path)
if file_ext == '.obj': # 10MB以上
try:
# 使用临时文件避免内存问题 [8](@ref)
temp_path = local_path + '.tmp'
with open(local_path, 'r', encoding='utf-8') as f_in, \
open(temp_path, 'w', encoding='utf-8') as f_out:
mtllib_modified = False
for line in f_in:
if not mtllib_modified and line.strip().startswith('mtllib '):
parts = line.split(' ', 1)
if len(parts) > 1:
old_mtl_name = parts[1].strip()
new_mtl_name = f"{batch_model_info.order_id}_{old_mtl_name}"
f_out.write(f"mtllib {new_mtl_name}\n")
mtllib_modified = True
print("len(parts) > 1")
continue
f_out.write(line)
os.replace(temp_path, local_path) # 原子性替换
except IOError as e:
print(f"处理大文件 {local_path} 时出错: {e}")
if os.path.exists(temp_path):
os.remove(temp_path)
# 优化后的.obj文件处理逻辑
if file_ext == '.mtl':
try:
# 使用更高效的文件读取方式 [6,8](@ref)
with open(local_path, 'r', encoding='utf-8') as f:
content = f.read()
# 使用字符串方法直接查找和替换,避免不必要的循环 [9](@ref)
lines = content.split('\n')
mtllib_modified = False
for i, line in enumerate(lines):
stripped_line = line.strip()
if not mtllib_modified and stripped_line.startswith('map_Kd '):
# 更高效的分割方式 [9](@ref)
parts = line.split(' ', 1)
if len(parts) > 1:
old_name = parts[1].strip()
new_name = f"{batch_model_info.order_id}_{old_name}"
lines[i] = f"map_Kd {new_name}"
mtllib_modified = True
print(f"已更新材质库引用: {old_name} -> {new_name}")
break # 找到第一个后立即退出
# 批量写入,减少I/O操作 [6](@ref)
with open(local_path, 'w', encoding='utf-8') as f:
f.write('\n'.join(lines))
except IOError as e:
print(f"处理文件 {local_path} 时出错: {e}")
except UnicodeDecodeError as e:
print(f"文件编码错误 {local_path}: {e}")
print(f"下载文件: {obj_key} -> {local_path}")
return True
def download_single_file(self):
"""
下载单个文件从OSS到本地
"""
# 确保本地目录存在
os.makedirs(os.path.dirname(self.local_path), exist_ok=True)
# 直接下载文件
try:
self.oss_client.get_object_to_file(self.oss_path, self.local_path)
print(f"文件已下载到: {self.local_path}")
except oss2.exceptions.NoSuchKey:
print(f"OSS文件不存在: {self.oss_path}")
def upload_data(self):
'''
上传数据到OSS
'''
# 检测本地路径是否存在
if not os.path.exists(self.local_path):
raise FileNotFoundError(f"本地路径不存在: {self.local_path}")
# 判断本地路径是文件还是目录
if os.path.isfile(self.local_path):
local_suffix = Path(self.local_path).suffix
oss_suffix = Path(self.oss_path).suffix
if oss_suffix and oss_suffix != local_suffix:
# 后缀名不一致,上传到指定文件夹下的同名文件
oss_dir = os.path.dirname(self.oss_path)
oss_target_path = os.path.join(oss_dir, os.path.basename(self.local_path))
else:
# 后缀名一致,上传到指定OSS路径
oss_target_path = self.oss_path
# 上传文件
self.oss_client.put_object_from_file(oss_target_path, self.local_path)
print(f"文件已上传到: {oss_target_path}")
elif os.path.isdir(self.local_path):
oss_suffix = Path(self.oss_path).suffix
if oss_suffix:
raise ValueError("不能将目录上传到具有后缀名的OSS路径。")
# 遍历本地目录并上传
for root, dirs, files in os.walk(self.local_path):
for file in files:
local_file_path = os.path.join(root, file)
relative_path = os.path.relpath(local_file_path, self.local_path)
oss_file_path = os.path.join(self.oss_path, relative_path).replace("\\", "/")
# 创建必要的目录
oss_dir = os.path.dirname(oss_file_path)
# 上传文件
self.oss_client.put_object_from_file(oss_file_path, local_file_path)
print(f"文件已上传到: {oss_file_path}")
else:
raise ValueError(f"无效的本地路径类型: {self.local_path}")
import requests
import json
import shutil
def get_api(url):
try:
response = requests.get(url)
response.raise_for_status() # 检查请求是否成功
response = json.loads(response.text)
if response.get("code") != 1000:
raise Exception(f"Error fetching URL {url}: {response.get('message')}")
else:
return response
except requests.exceptions.RequestException as e:
raise Exception(f"Error fetching URL {url}: {e}")
from dataclasses import dataclass
@dataclass
class JSONModelInfo:
obj_name: str
order_id: str
pid: str
model_height: str
def read_pids_from_json(pid_file):
"""从文件读取所有PID"""
# with open(pid_file, 'r') as f:
# # 过滤掉空行并去除每行首尾的空白字符
# return [line.strip() for line in f if line.strip()]
json_path = pid_file
"""
加载JSON文件,读取所有模型信息,应用变换后返回模型列表
"""
# 检查JSON文件是否存在
if not os.path.exists(json_path):
print(f"错误: JSON文件不存在 - {json_path}")
return []
# 读取JSON文件
try:
with open(json_path, 'r') as f:
data = json.load(f)
except Exception as e:
print(f"读取JSON文件失败: {e}")
return []
list_model_info = []
# 处理每个模型
for model in data.get('models', []):
obj_name = model.get('file_name', '')
parts = obj_name.split('_')
order_id = parts[0]
pid = parts[1]
model_height = parts[3]
model_info = JSONModelInfo(
obj_name=obj_name,
order_id=order_id,
pid=pid,
model_height=model_height
)
list_model_info.append(model_info)
return list_model_info, data
def download_data_by_json(model_info, workdir, oss_client ):
'''
下载卡通化数据
'''
try:
pid = model_info.pid
model_height = model_info.model_height
# target_dir = f"{workdir}/{pid}_image"
target_dir = f"{workdir}"
# {"code":1000,"data":"base_cartoon/badge/101/3/init_obj","message":"success1"}
# https://mp.api.suwa3d.com/api/order/getOssSuffixByOrderId?order_id=879312
url = f"https://mp.api.suwa3d.com/api/order/getOssSuffixByOrderId?order_id={model_info.order_id}"
res = requests.get(url)
data = res.json()["data"]
# print("datas=",data)
data = data.replace("/init_obj", "")
print("target_dir=", target_dir)
# download_textures = DataTransfer(target_dir, f"objs/download/print/{pid}/base/model/{model_height}/", oss_client)
# download_textures = DataTransfer(target_dir, f"objs/download/print/{pid}/base_cartoon/badge/101/3/{model_height}/", oss_client)
download_textures = DataTransfer(target_dir, f"objs/download/print/{pid}/{data}/{model_height}/", oss_client)
download_textures.download_data_rename_json(model_info)
# 下载后检查目标文件夹是否为空
if os.path.exists(target_dir) and not os.listdir(target_dir):
shutil.rmtree(target_dir)
print(f"下载后检查发现目标文件夹为空,已删除: {target_dir}")
except Exception as e:
print(f"卡通图片下载失败: {pid}, 错误: {str(e)}")
pass
@dataclass
class BatchModelInfo:
order_id: str
pid: str
print_order_id: str
model_size: str
path: str
count: str
def read_paths_from_batch(batch_id):
url = f"https://mp.api.suwa3d.com/api/printOrder/getInfoByPrintBatchId?batch_id={batch_id}"
res = requests.get(url)
datas = res.json()["data"]
print("datas=",datas)
list_print_model_info = []
for data in datas:
batch_model_info = BatchModelInfo(
order_id=data["order_id"],
pid=data["pid"],
print_order_id=data["print_order_id"],
model_size=data["model_size"],
path=data["path"],
count=data["quantity"]
)
list_print_model_info.append(batch_model_info)
return list_print_model_info, datas
def download_data_by_batch(batch_model_info, workdir, oss_client ):
try:
target_dir = f"{workdir}"
print("target_dir=", target_dir)
path = batch_model_info.path
download_textures = DataTransfer(target_dir, f"{path}/", oss_client)
if not download_textures.download_data_rename_batch(batch_model_info):
print("fail download_data_rename_batch")
return False
# 下载后检查目标文件夹是否为空
if os.path.exists(target_dir) and not os.listdir(target_dir):
shutil.rmtree(target_dir)
print(f"下载后检查发现目标文件夹为空,已删除: {target_dir}")
except Exception as e:
print(f"下载失败: {path}, 错误: {str(e)}")
pass
return True
def download_datas_by_batch(batch_id, workdir, oss_config):
oss_client = get_oss_client(oss_config)
# 读取所有path
list_print_model_info, datas = read_paths_from_batch(batch_id)
print(f"从文件读取了 {len(list_print_model_info)} 个path")
# 批量下载
for batch_model_info in list_print_model_info:
print(f"开始下载print_model_info: {batch_model_info}")
if not download_data_by_batch(batch_model_info, workdir, oss_client):
return datas, False
return datas, True
def download_datas_by_pre_layout(list_print_model_info, workdir, oss_config):
oss_client = get_oss_client(oss_config)
print(f"从文件读取了 {len(list_print_model_info)} 个path")
# 批量下载
for batch_model_info in list_print_model_info:
print(f"开始下载print_model_info: {batch_model_info}")
if not download_data_by_batch(batch_model_info, workdir, oss_client):
return False
return True
def download_transform_save_by_batch(batch_id, workdir, oss_config):
datas, succ = download_datas_by_batch(batch_id, workdir, oss_config)
print("datas=", datas)
layout_data = datas["layout_data"]
original_obj_pid_dir = workdir
transform_save_o3d(layout_data, original_obj_pid_dir)
def download_datas_by_json(pid_file, workdir, oss_config):
oss_client = get_oss_client(oss_config)
#json_path = os.path.join(workdir, "3DPrintLayout.json")
json_path = os.path.join(workdir, f"{pid_file}.json")
# 读取所有PID
list_model_info, data = read_pids_from_json(json_path)
print(f"从文件读取了 {len(list_model_info)} 个PID")
# 批量下载
for model_info in list_model_info:
print(f"开始下载PID: {model_info}")
download_data_by_json(model_info, args.workdir, oss_client)
return data
def download_transform_save_by_json(pid_file, workdir, oss_config):
layout_data = download_datas_by_json(pid_file, workdir, oss_config)
original_obj_pid_dir = workdir
transform_save_o3d(layout_data, original_obj_pid_dir)
def upload_result(base_original_obj_dir, oss_config, batch_id):
oss_client = get_oss_client(oss_config)
try:
target_dir = f"{base_original_obj_dir}"
oss_batch_dir = "batchPrint"
print(f"is_use_debug_oss={is_use_debug_oss()}")
if is_use_debug_oss():
oss_batch_dir = "batchPrint/debug_hsc"
print(f"target_dir={target_dir}, batch_id={batch_id}")
data_transfer = DataTransfer(f"{target_dir}/{batch_id}.json", f"{oss_batch_dir}/{batch_id}/{batch_id}.json", oss_client)
data_transfer.upload_data()
data_transfer = DataTransfer(f"{target_dir}/{batch_id}.jpg", f"{oss_batch_dir}/{batch_id}/{batch_id}.jpg", oss_client)
data_transfer.upload_data()
except Exception as e:
print(f"失败: {batch_id}, 错误: {str(e)}")
pass
import open3d as o3d
if __name__ == "__main__":
parser = argparse.ArgumentParser()
is_by_batch = True
is_transform_save = False
if is_by_batch:
# 通过批次下载
"""
parser.add_argument("--batch_id", type=str, required=True, help="batch_id")
parser.add_argument("--workdir", type=str, required=True)
parser.add_argument("--oss_config", type=str, required=True)
args = parser.parse_args()
"""
# batch_id = args.batch_id
batch_id = 10118
# workdir = args.workdir
workdir = f"{print_factory_type_dir}/{batch_id}"
# oss_config = args.oss_config
oss_config = f"{print_factory_type_dir}/print_factory_type_setting_big/download_print/run.yaml"
if is_transform_save:
download_transform_save_by_batch(batch_id, workdir, oss_config)
else:
download_datas_by_batch(batch_id, workdir, oss_config)
"""
oss_client = get_oss_client(args.oss_config)
# 读取所有path
list_print_model_info = read_paths_from_batch(args.batch_id)
print(f"从文件读取了 {len(list_print_model_info)} 个path")
# 批量下载
for batch_model_info in list_print_model_info:
print(f"开始下载print_model_info: {batch_model_info}")
download_data_by_batch(batch_model_info, args.workdir, oss_client)
"""
else:
# 通过Json下载
parser.add_argument("--batch_id", type=str, required=True, help="包含PID列表的json文件路径")
parser.add_argument("--workdir", type=str, required=True)
parser.add_argument("--oss_config", type=str, required=True)
args = parser.parse_args()
if is_transform_save:
download_transform_save_by_json(args.batch_id, args.workdir, args.oss_config)
else:
download_datas_by_json(args.batch_id, args.workdir, args.oss_config)
"""
oss_client = get_oss_client(args.oss_config)
pid_file = os.path.join(args.workdir, "3DPrintLayout.json")
print("pid_file=", pid_file)
# 读取所有PID
list_model_info = read_pids_from_json(pid_file)
print(f"从文件读取了 {len(list_model_info)} 个PID")
# 批量下载
for model_info in list_model_info:
print(f"开始下载PID: {model_info}")
download_data_by_json(model_info, args.workdir, oss_client)
"""