Browse Source

dreamTeach 贴图处理

master
dongchangxi 6 months ago
parent
commit
dcf79e3f6d
  1. 28
      apps/auto_convert3d_new.py
  2. 368
      apps/ps_image_shadow_up_ag_two_d.py
  3. 492
      apps/ps_image_white_add_white_d.py
  4. 354
      apps/remove_light_fix_up_shadow_dream_tech.py

28
apps/auto_convert3d_new.py

@ -3,7 +3,7 @@ import os, oss2, time, redis, requests, shutil, sys, subprocess, json, platform @@ -3,7 +3,7 @@ import os, oss2, time, redis, requests, shutil, sys, subprocess, json, platform
from PIL import Image, ImageDraw, ImageFont
from retrying import retry
import atexit,platform
import white_purification_v4,white_purification
import white_purification_v4,white_purification,remove_light_fix_up_shadow_dream_tech
if platform.system() == 'Windows':
sys.path.append('e:\\libs\\')
import common
@ -121,12 +121,28 @@ def team_check(r): @@ -121,12 +121,28 @@ def team_check(r):
print(res.text)
pid = res.json()['data']['pid']
orderId = res.json()['data']['order_id']
shopId = res.json()['data']['shop_id']
pid = str(pid)
orderId = str(orderId)
shopId = str(shopId)
#print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()), f'pid:{pid} repair_id:{repair_id} 生成团队审核模型 start model:IndependentRepairTeamcheckGLBQueue', )
ossPath = down_obj_fromoss(pid,orderId)
#对文件进行白色提纯处理
imagePath = os.path.join(workdir, 'print', pid,orderId,pid+"Tex1.jpg")
print("开始处理白色提纯")
#white_purification.white_purification_utils(imagePath)
if shopId == "240":
os.system(f'python D:\\make2\\apps\\remove_light_fix_up_shadow_dream_tech.py -input_path {imagePath} -output_path {imagePath}')
else:
os.system(f'python D:\\make2\\apps\\white_purification.py -i {imagePath}')
print("贴图文件白色提纯完成",imagePath)
#提纯完重新上传提纯图片
ossImagePath = os.path.join("objs/print", pid,ossPath,"texture","process_"+pid+"Tex1.jpg")
oss_client.put_object_from_file(f"objs/print/{pid}/{ossPath}/texture/process_{pid}Tex1.jpg",imagePath)
print("白色提纯上传图片路径-",ossImagePath,imagePath)
obj_filename = f'{pid}.obj'
glb_filename = f'{orderId}.glb'
@ -150,17 +166,7 @@ def team_check(r): @@ -150,17 +166,7 @@ def team_check(r):
oss_client.put_object_from_file(f'glbs/print/order_id/{glb_filename}', os.path.join(workdir, "print", pid,orderId, glb_filename))
#对文件进行白色提纯处理
imagePath = os.path.join(workdir, 'print', pid,orderId,pid+"Tex1.jpg")
print("开始处理白色提纯")
#white_purification.white_purification_utils(imagePath)
os.system(f'python D:\\make2\\apps\white_purification_v4.py -i {imagePath}')
print("贴图文件白色提纯完成",imagePath)
#提纯完重新上传提纯图片
ossImagePath = os.path.join("objs/print", pid,ossPath,"texture","process_"+pid+"Tex1.jpg")
oss_client.put_object_from_file(f"objs/print/{pid}/{ossPath}/texture/process_{pid}Tex1.jpg",imagePath)
print("白色提纯上传图片路径-",ossImagePath,imagePath)

368
apps/ps_image_shadow_up_ag_two_d.py

@ -0,0 +1,368 @@ @@ -0,0 +1,368 @@
import os.path
import numpy as np
from scipy.interpolate import CubicSpline
import cv2
import argparse
from ps_image_white_add_white_d import photoshop_add_white
def adjust_levels_image(img):
""""""
img = img.astype(np.float32)
img = 255 * ((img - 20) / (241 - 20))
img[img < 0] = 0
img[img > 255] = 255
img = 255 * np.power(img / 255.0, 1.0 / 1.34)
img = (img / 255) * (255- 0) + 0
img[img < 0] = 0
img[img > 255] = 255
img = img.astype(np.uint8)
return img
def photoshop_style_feather(image, mask, radius=150):
"""
"""
if mask.dtype != np.uint8:
mask = (mask * 255).astype(np.uint8)
if len(mask.shape) > 2:
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
kernel_size = max(3, int(2 * np.ceil(2 * radius) + 1))
expanded_size = (mask.shape[0] + 2 * radius, mask.shape[1] + 2 * radius)
expanded_mask = np.zeros(expanded_size, dtype=np.uint8)
center_y, center_x = radius, radius
expanded_mask[center_y:center_y + mask.shape[0],
center_x:center_x + mask.shape[1]] = mask
blurred_expanded_mask = cv2.GaussianBlur(
expanded_mask,
(kernel_size, kernel_size),
sigmaX=radius,
sigmaY=radius,
borderType=cv2.BORDER_REFLECT_101
)
feathered_mask = blurred_expanded_mask[center_y:center_y + mask.shape[0],
center_x:center_x + mask.shape[1]]
feathered_mask = feathered_mask.astype(np.float32) / 255.0
feathered_mask = np.power(feathered_mask, 1.1) # 轻微增强对比度
feathered_mask = np.clip(feathered_mask * 255, 0, 255).astype(np.uint8)
return feathered_mask
def calculate_luminance(img):
""""""
if len(img.shape) == 3:
ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb)
return ycrcb[:, :, 0].astype(np.float32) / 255.0
else:
return img.astype(np.float32) / 255.0
def photoshop_feather_blend(adjusted_img, original_img, mask, feather_radius=150, brightness_factor=0.95):
"""
"""
if mask.dtype != np.uint8:
mask = (mask * 255).astype(np.uint8)
if len(mask.shape) > 2:
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
# plt.figure(figsize=(10, 8))
# plt.imshow(mask, cmap='gray')
# plt.title("Feathered Mask")
# plt.axis('off')
# plt.colorbar(label='Opacity')
# plt.show()
feathered_mask = photoshop_style_feather(original_img, mask, feather_radius)
# plt.figure(figsize=(10, 8))
# plt.imshow(feathered_mask, cmap='gray')
# plt.title("Feathered Mask")
# plt.axis('off')
# plt.colorbar(label='Opacity')
# plt.show()
feathered_mask_float = feathered_mask.astype(np.float32) / 255.0
if len(original_img.shape) == 3 and len(feathered_mask_float.shape) == 2:
feathered_mask_float = np.stack([feathered_mask_float] * 3, axis=-1)
def to_linear(img):
img_linear = img.astype(np.float32) / 255.0
return np.where(img_linear <= 0.04045,
img_linear / 12.92,
((img_linear + 0.055) / 1.055) ** 2.4)
def to_srgb(img_linear):
return np.where(img_linear <= 0.0031308,
img_linear * 12.92,
1.055 * (img_linear ** (1 / 2.4)) - 0.055)
adjusted_linear = to_linear(adjusted_img)
original_linear = to_linear(original_img)
luminance_adjustment = np.mean(original_linear, axis=-1, keepdims=True) * (1.0 - brightness_factor)
adjusted_linear_corrected = adjusted_linear - luminance_adjustment
blended_linear = (adjusted_linear_corrected * feathered_mask_float +
original_linear * (1 - feathered_mask_float))
blended_srgb = to_srgb(blended_linear)
blended_img = np.clip(blended_srgb * 255, 0, 255).astype(np.uint8)
return blended_img
def rgb2lab_image(rgb_img):
""""""
rgb = rgb_img.astype(np.float32) / 255.0
mask = rgb > 0.04045
rgb = np.where(mask,
np.power((rgb + 0.055) / 1.055, 2.4),
rgb / 12.92)
XYZ = np.dot(rgb, [
[0.436052025, 0.222491598, 0.013929122],
[0.385081593, 0.716886060, 0.097097002],
[0.143087414, 0.060621486, 0.714185470]
])
XYZ *= np.array([100.0, 100.0, 100.0]) / [96.4221, 100.0, 82.5211]
epsilon = 0.008856
kappa = 903.3
XYZ_norm = np.where(XYZ > epsilon,
np.power(XYZ, 1 / 3),
(kappa * XYZ + 16) / 116)
L = 116 * XYZ_norm[..., 1] - 16
a = 500 * (XYZ_norm[..., 0] - XYZ_norm[..., 1])
b = 200 * (XYZ_norm[..., 1] - XYZ_norm[..., 2])
return np.stack([L, a, b], axis=-1)
def photoshop_lab_color_range_optimized(bgr_img, target_lab, tolerance=59, anti_alias=True):
""""""
rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB)
lab_img = rgb2lab_image(rgb_img)
L, a, b = lab_img[:, :, 0], lab_img[:, :, 1], lab_img[:, :, 2]
target_L, target_a, target_b = target_lab
diff_L = np.abs(L - target_L)
diff_a = np.abs(a - target_a)
diff_b = np.abs(b - target_b)
dark_boost = np.ones_like(L)
dark_mask = L <40
dark_boost[dark_mask] = 1.2
weighted_diff = np.sqrt(
0.25 * (diff_L / 100) ** 2 +
0.75 * ((diff_a + diff_b) / 255) ** 2
) * 100
weighted_diff = weighted_diff / dark_boost
threshold = 1.6 * (100 - tolerance) / 100 * 23
normalized_diff = weighted_diff / threshold
mask = 0.5 * (np.tanh(4 * (1 - normalized_diff)) + 1)
if anti_alias:
mask = cv2.GaussianBlur(mask, (5, 5), 0)
return mask
def generate_curve_lut(x_points, y_points):
"""
输入采样点生成 256 长度的查找表LUT
"""
cs = CubicSpline(x_points, y_points, bc_type='natural')
x = np.arange(256)
y = cs(x)
y = np.clip(y, 0, 255).astype(np.uint8)
return y
def apply_curve(img, lut):
"""
对图像的每个通道应用曲线 LUT复合通道
"""
result = cv2.LUT(img, lut)
return result
def add_color_image(img):
""""""
# x_points = [0, 131, 255]
# y_points = [0, 124, 255]
x_points = [6, 184, 255]
y_points = [0, 191, 255]
lut = generate_curve_lut(x_points, y_points)
adjusted = apply_curve(img, lut)
return adjusted
def unsharp_mask(image, radius=5.0, amount=1.5, threshold=10):
"""
对图像应用 Unsharp Mask 锐化
参数:
- image: 输入图像必须是3通道BGR格式
- radius: 高斯模糊半径标准差
- amount: 锐化强度
- threshold: 差异阈值仅大于该值的区域会被增强
"""
if len(image.shape) != 3 or image.shape[2] != 3:
raise ValueError("输入必须是3通道BGR图像")
if max(image.shape[:2]) > 20000:
return unsharp_mask_blockwise(image, radius, amount, threshold)
img_float = image.astype(np.float32) if image.dtype != np.float32 else image
blurred = cv2.GaussianBlur(img_float, (0, 0), radius)
diff = img_float - blurred
mask = np.abs(diff) > threshold
sharpened = img_float.copy()
sharpened[mask] = img_float[mask] + diff[mask] * amount
return np.clip(sharpened, 0, 255).astype(np.uint8)
def unsharp_mask_blockwise(image, radius=5.0, amount=1.5, threshold=10, block_size=1024):
"""
分块执行 Unsharp Mask适用于超大图像防止内存爆炸
"""
h, w = image.shape[:2]
output = np.zeros_like(image)
for y in range(0, h, block_size):
for x in range(0, w, block_size):
block = image[y:y + block_size, x:x + block_size]
output[y:y + block_size, x:x + block_size] = unsharp_mask(block, radius, amount, threshold)
return output
def add_shadow_image(img):
""""""
x_points = [0, 131, 255]
y_points = [0, 124, 255]
lut = generate_curve_lut(x_points, y_points)
adjusted = apply_curve(img, lut)
return adjusted
def create_red_mask(img):
"""使用 Lab 空间中的 A 通道提取红色区域,返回 (h, w, 1) 掩码"""
lab = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)
a = lab[..., 1].astype(np.float32)
red_score = np.clip((a - 128) / 50.0, 0, 1) # A 通道 > 128 表示偏红
red_score = cv2.GaussianBlur(red_score, (9, 9), sigmaX=4)
return red_score[..., np.newaxis] # 变成 (h, w, 1)
def cmyk_to_rgb(cmyk):
"""CMYK → RGB,模拟Photoshop近似"""
c, m, y, k = cmyk[..., 0], cmyk[..., 1], cmyk[..., 2], cmyk[..., 3]
r = (1 - c) * (1 - k)
g = (1 - m) * (1 - k)
b = (1 - y) * (1 - k)
return np.clip(np.stack([r, g, b], axis=-1) * 255, 0, 255)
def rgb_to_cmyk(rgb):
"""RGB → CMYK,模拟Photoshop近似"""
r, g, b = rgb[..., 0] / 255.0, rgb[..., 1] / 255.0, rgb[..., 2] / 255.0
k = 1 - np.maximum.reduce([r, g, b])
k_safe = np.where(k == 1, 1, k)
c = np.where(k == 1, 0, (1 - r - k) / (1 - k_safe))
m = np.where(k == 1, 0, (1 - g - k) / (1 - k_safe))
y = np.where(k == 1, 0, (1 - b - k) / (1 - k_safe))
return np.stack([c, m, y, k], axis=-1)
def selective_color_adjustment(img, target_color, cmyk_adjustments, relative=True):
if target_color != 'red':
raise NotImplementedError("当前只支持 red")
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB).astype(np.float32)
mask = create_red_mask(img)
cmyk = rgb_to_cmyk(img_rgb)
# 应用 CMYK 调整
for channel, value in cmyk_adjustments.items():
idx = {'cyan': 0, 'magenta': 1, 'yellow': 2, 'black': 3}.get(channel)
if idx is None:
continue
original = cmyk[..., idx]
v = value / 100.0
if relative:
# 非线性相对调整,更接近 Photoshop 曲线(经验公式)
adjusted = original * (1 + v) ** 1.35 # gamma 可调
else:
adjusted = original + v
cmyk[..., idx] = np.clip(adjusted, 0, 1)
# 转换回 RGB 并混合
adjusted_rgb = cmyk_to_rgb(cmyk)
output_rgb = img_rgb * (1 - mask) + adjusted_rgb * mask
output_rgb = np.clip(output_rgb, 0, 255).astype(np.uint8)
return cv2.cvtColor(output_rgb, cv2.COLOR_RGB2BGR)
def reduce_red_black_relative(img):
"""模拟 Photoshop:红色 → 黑色 -8%,相对模式"""
return selective_color_adjustment(
img,
target_color='red',
cmyk_adjustments={'black': -8},
relative=True
)
def photoshop_actions_emulation(input_path, output_path):
""""""
original_img = cv2.imread(input_path)
# 加暗
shadow_image1=add_shadow_image(original_img)
shadow_image2 = add_shadow_image(shadow_image1)
# output_down_path= output_path.replace(".jpg","down.jpg")
# cv2.imwrite(output_down_path, shadow_image2)
original_img_color=add_color_image(shadow_image2)
# output_color_path= output_path.replace(".jpg","add_color.jpg")
# cv2.imwrite(output_color_path, original_img_color)
#白位加白
result_white_image= photoshop_add_white(original_img_color)
# output_white_path= output_color_path.replace(".jpg","white.jpg")
# cv2.imwrite(output_white_path, result_white_image)
#锐化
result_usm = unsharp_mask(result_white_image, radius=2, amount=0.4, threshold=10)
cv2.imwrite(output_path, result_usm)
if __name__ == '__main__':
arg = argparse.ArgumentParser()
arg.add_argument('--image_name', type=str, default='274351Tex1_adjusted060518_2_221.jpg')
arg.add_argument('--image_name_new', type=str, default='274351Tex1_adjusted060518_2_221_999999.jpg')
arg.add_argument('--in_dir', type=str, default='/data/datasets_20t/fsdownload/image_color_timing/output/')
arg.add_argument('--out_dir', type=str, default='/data/datasets_20t/fsdownload/image_color_timing/shadow_up/')
args = arg.parse_args()
os.makedirs(args.out_dir,exist_ok=True)
input_path = os.path.join(args.in_dir,args.image_name)
output_path = os.path.join(args.out_dir,args.image_name_new)
photoshop_actions_emulation(input_path, output_path)
人种

492
apps/ps_image_white_add_white_d.py

@ -0,0 +1,492 @@ @@ -0,0 +1,492 @@
import os.path
import numpy as np
from PIL import Image
from scipy.ndimage import gaussian_filter
import matplotlib.pyplot as plt
from skimage import io, color
from PIL import Image
import cv2
from skimage.exposure import match_histograms
from skimage.color import rgb2lab, lab2rgb
import time
def rgb_to_lab_photoshop(rgb):
"""
RGB 转换为 LAB使用 Photoshop 中的转换公式
"""
# 线性化 RGB
r, g, b = rgb[..., 0] / 255.0, rgb[..., 1] / 255.0, rgb[..., 2] / 255.0
r = np.where(r <= 0.04045, r, ((r + 0.055) / 1.055) ** 2.4)
g = np.where(g <= 0.04045, g, ((g + 0.055) / 1.055) ** 2.4)
b = np.where(b <= 0.04045, b, ((b + 0.055) / 1.055) ** 2.4)
x = r * 0.4124564 + g * 0.3575761 + b * 0.1804375
y = r * 0.2126729 + g * 0.7151522 + b * 0.0721750
z = r * 0.0193339 + g * 0.1191920 + b * 0.9503041
# 白点 D65 归一化
x = x / 0.95047
y = y / 1.00000
z = z / 1.08883
# XYZ 到 LAB 转换
epsilon = 0.008856
kappa = 903.3
x = np.where(x > epsilon, x ** (1 / 3), (kappa * x + 16) / 116)
y = np.where(y > epsilon, y ** (1 / 3), (kappa * y + 16) / 116)
z = np.where(z > epsilon, z ** (1 / 3), (kappa * z + 16) / 116)
l = 116 * y - 16
a = 500 * (x - y)
b = 200 * (y - z)
return np.stack([l, a, b], axis=-1)
def create_mask_from_lab(lab_image, target_L, target_a, target_b, tolerance_L=5, tolerance_a=5, tolerance_b=5):
"""
根据给定的 L, a, b 值范围生成一个掩膜
参数
lab_image: 输入的 LAB 图像
target_L: 目标 L
target_a: 目标 a
target_b: 目标 b
tolerance_L: L 值的容差范围
tolerance_a: a 值的容差范围
tolerance_b: b 值的容差范围
返回
mask: 生成的掩膜1 表示符合条件0 表示不符合
"""
mask = (
(np.abs(lab_image[..., 0] - target_L) <= tolerance_L) &
(np.abs(lab_image[..., 1] - target_a) <= tolerance_a) &
(np.abs(lab_image[..., 2] - target_b) <= tolerance_b)
).astype(np.uint8)
return mask
def filter_contours_by_enclosing_circle(mask, min_diameter=50):
"""
"""
cleaned_mask = np.zeros_like(mask)
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
# 计算最小外接圆
(x, y), radius = cv2.minEnclosingCircle(contour)
diameter = 2 * radius
# 判断是否能放下指定直径的圆
if diameter >= min_diameter:
cv2.drawContours(cleaned_mask, [contour], -1, 255, thickness=cv2.FILLED)
return cleaned_mask
# def adjust_levels_image(img):
# """"""
# img = img.astype(np.float32)
# img = 255 * ((img - 20) / (241 - 20))
# img[img < 0] = 0
# img[img > 255] = 255
# img = 255 * np.power(img / 255.0, 1.0 / 1.34)
# img = (img / 255) * (255- 0) + 0
# img[img < 0] = 0
# img[img > 255] = 255
# img = img.astype(np.uint8)
# return img
def normalize_coeffs(coeffs):
median_val = sorted(coeffs)[1]
return np.array([coef - median_val for coef in coeffs])
def img_bgr2rgb(img):
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = img.astype(np.float32) / 255.0
img = img.copy()
return img
def highlight_handle(img, highlight_coeffs):
highlights_alpha = 0.003923 * normalize_coeffs(highlight_coeffs)
a = np.diag(np.maximum(highlights_alpha, 0)) * np.eye(3)
b = np.diag(-np.minimum(highlights_alpha, 0)) * (1 - np.eye(3))
highlights_alpha = np.sum(a + b, axis=0)
img = img / (1 - highlights_alpha.reshape(1, 1, 3))
return img
def shadow_handle(img, shadows_coef):
shadows_alpha = 0.003923 * normalize_coeffs(shadows_coef)
a = np.diag(-np.minimum(shadows_alpha, 0)) * np.eye(3)
b = np.diag(np.maximum(shadows_alpha, 0)) * (1 - np.eye(3))
shadows_alpha = np.sum(a + b, axis=0)
img = (img - shadows_alpha.reshape(1, 1, 3)) / (1 - shadows_alpha.reshape(1, 1, 3))
return img
def mid_tone_handle(img, mid_tone_coeffs):
mid_tone_alpha = -0.0033944 * normalize_coeffs(mid_tone_coeffs)
f = np.diag(mid_tone_alpha) * (2 * np.eye(3) - 1)
mid_tone_gamma = np.exp(np.sum(f, axis=0))
img = np.power(img, mid_tone_gamma.reshape(1, 1, 3))
return img
def img_rgb2bgr(img):
img = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX)
img = img.astype(np.uint8)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
return img
def adjust_color_balance( image,
shadow_coefficients,
mid_tone_coefficients,
highlight_coefficients):
""""""
image = img_bgr2rgb(image)
image = highlight_handle(image, highlight_coefficients)
image = shadow_handle(image, shadow_coefficients)
image = mid_tone_handle(image, mid_tone_coefficients)
image = np.clip(image, 0, 1)
image = img_rgb2bgr(image)
cv2.imwrite('/data/datasets_20t/fsdownload/image_color_timing/white_add_white/9999999999999.jpg', image)
return image
def apply_gamut_mapping(values):
"""防止颜色溢出的色域映射函数"""
# 压缩高光区域以防止过曝
values = np.where(values > 0.9, 0.9 + (values - 0.9) * 0.5, values)
# 提亮阴影区域以防止死黑
values = np.where(values < 0.1, 0.1 * (values / 0.1) ** 0.7, values)
return np.clip(values, 0, 1)
# def match_colors(source, target, mask):
# """
# """
# matched = match_histograms(source, target, channel_axis=-1)
# mask_3ch = cv2.merge([mask] * 3) if len(mask.shape) == 2 else mask
# return source * (1 - mask_3ch) + matched * mask_3ch
# def match_colors(source, target, mask, strength):
# """
# :param source: 源图像 (H,W,3)
# :param target: 目标图像 (H,W,3)
# :param mask: 遮罩 (H,W) 或 (H,W,3), 值范围 0~1
# :param strength: 颜色匹配强度 (0~1)
# """
# matched = match_histograms(source, target, channel_axis=-1)
# mask_3ch = cv2.merge([mask] * 3) if len(mask.shape) == 2 else mask
# mask_weighted = mask_3ch * strength # 控制强度
# return source * (1 - mask_weighted) + matched * mask_weighted
def match_colors(source, target, mask, strength, brightness_scale=0.9):
matched = match_histograms(source, target, channel_axis=-1)
matched = matched * brightness_scale # 降低亮度
mask_3ch = cv2.merge([mask] * 3) if len(mask.shape) == 2 else mask
mask_weighted = mask_3ch * strength
return source * (1 - mask_weighted) + matched * mask_weighted
def apply_feathering(mask, radius):
""""""
mask_float = mask.astype(np.float32) / 255.0
blurred = cv2.GaussianBlur(mask_float, (0, 0), sigmaX=radius / 3, sigmaY=radius / 3)
return blurred
def photoshop_style_feather(image, mask, radius=150):
"""
实现接近Photoshop效果的羽化功能
参数:
image: 输入图像 (numpy array)
mask: 选区蒙版 (numpy array, 值范围0-255)
radius: 羽化半径 (像素)
返回:
羽化后的蒙版
"""
# 确保蒙版是uint8类型和单通道
if mask.dtype != np.uint8:
mask = (mask * 255).astype(np.uint8)
if len(mask.shape) > 2:
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
# 计算高斯核大小 (必须是奇数)
kernel_size = max(3, int(2 * np.ceil(2 * radius) + 1))
# 创建扩展的蒙版以模拟Photoshop的边界处理
expanded_size = (mask.shape[0] + 2 * radius, mask.shape[1] + 2 * radius)
expanded_mask = np.zeros(expanded_size, dtype=np.uint8)
# 将原始蒙版放置在扩展蒙版中央
center_y, center_x = radius, radius
expanded_mask[center_y:center_y + mask.shape[0],
center_x:center_x + mask.shape[1]] = mask
# 应用高斯模糊 (使用reflect边界处理,类似Photoshop)
blurred_expanded_mask = cv2.GaussianBlur(
expanded_mask,
(kernel_size, kernel_size),
sigmaX=radius,
sigmaY=radius,
borderType=cv2.BORDER_REFLECT_101
)
# 提取中央部分作为最终蒙版
feathered_mask = blurred_expanded_mask[center_y:center_y + mask.shape[0],
center_x:center_x + mask.shape[1]]
# 应用Photoshop特有的蒙版曲线调整
feathered_mask = feathered_mask.astype(np.float32) / 255.0
feathered_mask = np.power(feathered_mask, 1.1) # 轻微增强对比度
feathered_mask = np.clip(feathered_mask * 255, 0, 255).astype(np.uint8)
return feathered_mask
def calculate_luminance(img):
"""计算图像的亮度通道(YCbCr色彩空间的Y通道)"""
if len(img.shape) == 3:
ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb)
return ycrcb[:, :, 0].astype(np.float32) / 255.0
else:
return img.astype(np.float32) / 255.0
def photoshop_feather_blend(adjusted_img, original_img, mask, feather_radius=150, brightness_factor=0.95):
"""
使用改进的羽化蒙版融合两张图像更接近Photoshop效果解决偏亮问题
参数:
adjusted_img: 调整后的图像
original_img: 原始图像
mask: 选区蒙版 (范围0-255)
feather_radius: 羽化半径
brightness_compensation: 亮度补偿因子 (0.0-1.0)值越小补偿越多
返回:
融合后的图像
"""
if mask.dtype != np.uint8:
mask = (mask * 255).astype(np.uint8)
if len(mask.shape) > 2:
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
# plt.figure(figsize=(10, 8))
# plt.imshow(mask, cmap='gray')
# plt.title("Feathered Mask")
# plt.axis('off')
# plt.colorbar(label='Opacity')
# plt.show()
feathered_mask = photoshop_style_feather(original_img, mask, feather_radius)
# plt.figure(figsize=(10, 8))
# plt.imshow(feathered_mask, cmap='gray')
# plt.title("Feathered Mask")
# plt.axis('off')
# plt.colorbar(label='Opacity')
# plt.show()
feathered_mask_float = feathered_mask.astype(np.float32) / 255.0
# 扩展蒙版维度以匹配图像通道数
if len(original_img.shape) == 3 and len(feathered_mask_float.shape) == 2:
feathered_mask_float = np.stack([feathered_mask_float] * 3, axis=-1)
# 改进的混合算法,解决亮度提升问题
# 1. 将图像转换到线性空间(模拟sRGB到线性RGB的转换)
def to_linear(img):
img_linear = img.astype(np.float32) / 255.0
# 简单的gamma校正近似
return np.where(img_linear <= 0.04045,
img_linear / 12.92,
((img_linear + 0.055) / 1.055) ** 2.4)
# 2. 将图像转回sRGB空间
def to_srgb(img_linear):
return np.where(img_linear <= 0.0031308,
img_linear * 12.92,
1.055 * (img_linear ** (1 / 2.4)) - 0.055)
# 3. 在线性空间中执行混合
adjusted_linear = to_linear(adjusted_img)
original_linear = to_linear(original_img)
# 4. 应用亮度校正因子
luminance_adjustment = np.mean(original_linear, axis=-1, keepdims=True) * (1.0 - brightness_factor)
adjusted_linear_corrected = adjusted_linear - luminance_adjustment
# 5. 在线性空间中进行混合
blended_linear = (adjusted_linear_corrected * feathered_mask_float +
original_linear * (1 - feathered_mask_float))
# 6. 转回sRGB空间并转换回uint8
blended_srgb = to_srgb(blended_linear)
blended_img = np.clip(blended_srgb * 255, 0, 255).astype(np.uint8)
return blended_img
def rgb2lab_image(rgb_img):
"""将 RGB 图像转换为 Photoshop 风格的 Lab"""
rgb = rgb_img.astype(np.float32) / 255.0
mask = rgb > 0.04045
rgb = np.where(mask,
np.power((rgb + 0.055) / 1.055, 2.4),
rgb / 12.92)
XYZ = np.dot(rgb, [
[0.436052025, 0.222491598, 0.013929122],
[0.385081593, 0.716886060, 0.097097002],
[0.143087414, 0.060621486, 0.714185470]
])
XYZ *= np.array([100.0, 100.0, 100.0]) / [96.4221, 100.0, 82.5211]
epsilon = 0.008856
kappa = 903.3
XYZ_norm = np.where(XYZ > epsilon,
np.power(XYZ, 1 / 3),
(kappa * XYZ + 16) / 116)
L = 116 * XYZ_norm[..., 1] - 16
a = 500 * (XYZ_norm[..., 0] - XYZ_norm[..., 1])
b = 200 * (XYZ_norm[..., 1] - XYZ_norm[..., 2])
return np.stack([L, a, b], axis=-1)
def photoshop_lab_color_range_optimized(bgr_img, target_lab, tolerance=59, anti_alias=True):
"""优化的色彩范围选择算法,提供更精确的选择"""
rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB)
lab_img = rgb2lab_image(rgb_img)
# 分离通道
L, a, b = lab_img[:, :, 0], lab_img[:, :, 1], lab_img[:, :, 2]
target_L, target_a, target_b = target_lab
# 计算各通道差异
diff_L = np.abs(L - target_L)
diff_a = np.abs(a - target_a)
diff_b = np.abs(b - target_b)
# 暗部区域增强处理
dark_boost = np.ones_like(L)
dark_mask = L <40 # 只对较暗区域增强
dark_boost[dark_mask] = 1.2 # 增加暗部区域的敏感度
# 改进的加权差异计算,加入暗部增强
weighted_diff = np.sqrt(
0.25 * (diff_L / 100) ** 2 + # 进一步降低亮度权重
0.75 * ((diff_a + diff_b) / 255) ** 2 # 进一步增加颜色权重
) * 100
# 应用暗部增强
weighted_diff = weighted_diff / dark_boost
# 优化的容差转换公式
threshold = 1.6 * (100 - tolerance) / 100 * 23
# 应用更精确的 S 曲线,使用双曲正切函数提供更陡峭的过渡
normalized_diff = weighted_diff / threshold
mask = 0.5 * (np.tanh(4 * (1 - normalized_diff)) + 1)
# 抗锯齿处理
if anti_alias:
mask = cv2.GaussianBlur(mask, (5, 5), 0)
return mask
def photoshop_add_white(original_img, ):
""""""
#original_img = cv2.imread(input_path)
target_lab = np.array([89.06, 0.59, 6.66], dtype=np.float32)
tol= 85
mask = photoshop_lab_color_range_optimized(original_img, target_lab, tol)
# plt.figure(figsize=(10, 8))
# plt.imshow(mask, cmap='gray')
# plt.title("Feathered Mask")
# plt.axis('off')
# plt.colorbar(label='Opacity')
# plt.show()
mask_uint8 = (mask * 255).astype(np.uint8)
# adjusted_img = adjust_levels_image(original_img)
adjusted_img = adjust_color_balance(original_img,
shadow_coefficients=[0, 0, 0],
mid_tone_coefficients=[-20, 0, 5],
highlight_coefficients=[0, 0, 12],)
#cv2.imwrite('/data/datasets_20t/fsdownload/image_color_timing/white_add_white/9999999999999.jpg', adjusted_img)
#h, w = adjusted_img.shape[:2]
#mask = cv2.resize(mask_uint8, (w, h))
result = photoshop_feather_blend(adjusted_img, original_img, mask_uint8,
feather_radius=15, brightness_factor=0.9999)
#output_path="/data/datasets_20t/Downloads_google/correct_show_obj_dream_tech/290082/cache/290082Tex1_o_white.jpg"
return result
def photoshop_add_white3(input_path, ):
""""""
original_img = cv2.imread(input_path)
target_lab = np.array([89.06, 0.59, 6.66], dtype=np.float32)
tol= 85
mask = photoshop_lab_color_range_optimized(original_img, target_lab, tol)
# plt.figure(figsize=(10, 8))
# plt.imshow(mask, cmap='gray')
# plt.title("Feathered Mask")
# plt.axis('off')
# plt.colorbar(label='Opacity')
# plt.show()
mask_uint8 = (mask * 255).astype(np.uint8)
# adjusted_img = adjust_levels_image(original_img)
adjusted_img = adjust_color_balance(original_img,
shadow_coefficients=[0, 0, 0],
mid_tone_coefficients=[-20, 0, 5],
highlight_coefficients=[0, 0, 12],)
#cv2.imwrite('/data/datasets_20t/fsdownload/image_color_timing/white_add_white/9999999999999.jpg', adjusted_img)
#h, w = adjusted_img.shape[:2]
#mask = cv2.resize(mask_uint8, (w, h))
result = photoshop_feather_blend(adjusted_img, original_img, mask_uint8,
feather_radius=15, brightness_factor=0.99)
output_path="/data/datasets_20t/Downloads_google/correct_show_obj_dream_tech/290082/cache/290082Tex1_o_white.jpg"
cv2.imwrite(output_path, result)
return result
if __name__ == '__main__':
start_time = time.time()
# image_name="858408_272249Tex1_4_220.jpg"
# image_name_new= image_name.replace(".jpg","_999999.jpg")
# in_dir = "/data/datasets_20t/fsdownload/image_color_timing/output/"
# out_dir = "/data/datasets_20t/fsdownload/image_color_timing/white_add_white/"
# os.makedirs(out_dir,exist_ok=True)
input_path = "/data/datasets_20t/Downloads_google/correct_show_obj_dream_tech/290082/cache/290082Tex1_o.jpg"
photoshop_add_white3(input_path, )
print(f"程序运行时间: {time.time() - start_time:.2f}")
"""
百位加白
"""

354
apps/remove_light_fix_up_shadow_dream_tech.py

@ -0,0 +1,354 @@ @@ -0,0 +1,354 @@
import os.path
import shutil
import time
import argparse
import cv2
import numpy as np
from scipy.interpolate import CubicSpline
import sys, os
from PIL import Image, ImageEnhance
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from ps_image_shadow_up_ag_two_d import photoshop_actions_emulation
def smootherstep(x):
"""五次平滑插值函数:更加平滑过渡"""
return x**3 * (x * (x * 6 - 15) + 10)
def perceptual_smooth_adjustment_color_blend(img, threshold=220, reduction=0.5, margin=10, saturation_sensitivity=0.3, blur_radius=5, color_blend_strength=0.5):
"""
更平滑颜色融合感知亮度压制
- threshold: 压制起始亮度V 通道
- reduction: 压制强度0-1
- margin: 阈值过渡区间像素亮度差
- saturation_sensitivity: 饱和度高时减弱压制
- blur_radius: 用于颜色融合的模糊半径
- color_blend_strength: 颜色融合程度0~1
"""
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)
v = v.astype(np.float32)
s = s.astype(np.float32)
# 饱和度感知压制减弱
sat_weight = 1.0 - (s / 255.0 * saturation_sensitivity)
sat_weight = np.clip(sat_weight, 0.0, 1.0)
# 平滑压制权重计算
delta = v - threshold
transition = np.zeros_like(v, dtype=np.float32)
in_range = (delta > 0) & (delta < margin)
transition[in_range] = smootherstep(delta[in_range] / margin)
transition[delta >= margin] = 1.0
# 压制权重融合
weight = reduction * transition * sat_weight
# 应用压制
v_new = v - (v - threshold) * weight
v_new = np.clip(v_new, 0, 255).astype(np.uint8)
# 合成压制后的图像
adjusted_hsv = cv2.merge([h, s.astype(np.uint8), v_new])
adjusted = cv2.cvtColor(adjusted_hsv, cv2.COLOR_HSV2BGR)
# -------------------
# 融合原图模糊版 → 减少颜色突兀
# -------------------
blurred = cv2.GaussianBlur(img, (blur_radius | 1, blur_radius | 1), 0)
# 构建融合权重 mask,仅对过渡区域起作用
color_blend_mask = np.clip(weight, 0, 1) * color_blend_strength
color_blend_mask = color_blend_mask[..., None] # 扩展为 (H,W,1) 用于通道融合
# 将融合区域混合模糊
final = adjusted.astype(np.float32) * (1 - color_blend_mask) + blurred.astype(np.float32) * color_blend_mask
final = np.clip(final, 0, 255).astype(np.uint8)
return final
def process_image(input_path, output_path, threshold=210, reduction=0.6):
"""
"""
try:
img = cv2.imread(input_path)
if img is None:
raise ValueError("无法读取图像,请检查路径是否正确")
#result = perceptual_adjustment(img, threshold, reduction)
result = perceptual_smooth_adjustment_color_blend(img, threshold, reduction)
cv2.imwrite(output_path, result)
print(f"处理成功,结果已保存到: {output_path}")
return True
except Exception as e:
print(f"处理失败: {str(e)}")
return False
def sigmoid(x, center=0.0, slope=10.0):
return 1 / (1 + np.exp(-slope * (x - center)))
def reduce_highlights_lab_advanced_hsvmask(
img,
highlight_thresh=220,
strength=30,
sigma=15,
detail_boost=1.0,
preserve_local_contrast=True
):
"""
LAB高光压制 + HSV感知蒙版 + 细节保留
"""
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
V = hsv[:, :, 2].astype(np.float32)
# 1. 生成高光 mask,过渡平滑
mask = sigmoid(V, center=highlight_thresh, slope=0.05)
mask = np.clip(mask, 0, 1)
mask = cv2.GaussianBlur(mask, (0, 0), sigmaX=2)
mask_vis = (mask * 255).astype(np.uint8)
# 2. LAB 空间亮度压制
img_lab = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)
L, a, b = cv2.split(img_lab)
L = L.astype(np.float32)
# 3. 模糊和细节
L_blur = cv2.GaussianBlur(L, (0, 0), sigma)
L_detail = L - L_blur
# 4. 替代方案:压制 L,但融合方式更柔和
L_target = L_blur - strength * mask
L_target = np.clip(L_target, 0, 255)
if preserve_local_contrast:
# 保留细节 + 局部对比度(避免过度平滑)
L_new = L_target + detail_boost * L_detail
else:
# 单纯压制亮度
L_new = L_target
L_new = np.clip(L_new, 0, 255).astype(np.uint8)
# 5. 合成回去
lab_new = cv2.merge([L_new, a, b])
result = cv2.cvtColor(lab_new, cv2.COLOR_Lab2BGR)
return result, mask_vis
def suppress_highlights_keep_texture(image_bgr, v_thresh=225, target_v=215, sigma=1):
""""""
image_hsv = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(image_hsv)
v = v.astype(np.float32)
v_blur = cv2.GaussianBlur(v, (0, 0), sigmaX=sigma)
detail = v - v_blur
# 构建 soft mask(0~1),用于动态压制
mask = (v_blur > v_thresh).astype(np.float32)
# weight 越大压得越狠
weight = np.clip((v_blur - v_thresh) / 20.0, 0, 1) * mask # 20 是压制带宽
#weight =weight*1.2
# 将亮度压到 target_v 的线性混合:
v_compress = v_blur * (1 - weight) + target_v * weight
v_new = v_compress + detail
v_new = np.clip(v_new, 0, 255).astype(np.uint8)
hsv_new = cv2.merge([h, s, v_new])
result_bgr = cv2.cvtColor(hsv_new, cv2.COLOR_HSV2BGR)
return result_bgr
def correct_light_again_hsv(image_path):
img = cv2.imread(image_path)
result, mask_vis = reduce_highlights_lab_advanced_hsvmask(
img,
highlight_thresh=225,
strength=15,
sigma=10,
detail_boost=1.2
)
result_bgr= suppress_highlights_keep_texture(result)
output_image_path = image_path.replace(".jpg", "_light02.jpg")
cv2.imwrite(
output_image_path,
result_bgr
)
return output_image_path
def generate_curve_lut(x_points, y_points):
"""
输入采样点生成 256 长度的查找表LUT
"""
cs = CubicSpline(x_points, y_points, bc_type='natural')
x = np.arange(256)
y = cs(x)
y = np.clip(y, 0, 255).astype(np.uint8)
return y
def apply_curve(img, lut):
"""
对图像的每个通道应用曲线 LUT复合通道
"""
result = cv2.LUT(img, lut)
return result
def apply_curve_up_image(image_path,image_cache_dir):
"""提亮"""
x_points = [0, 124, 255]
y_points = [0, 131, 255]
lut = generate_curve_lut(x_points, y_points)
#adjusted = apply_curve(img, lut)
image_name_result = image_path.split("/")[-1].replace(".jpg", "_up.jpg")
result_path= os.path.join(image_cache_dir,image_name_result)
image_bgr = cv2.imread(image_path)
image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)
image_hsv = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2HSV).astype(np.float32)
h, s, v = cv2.split(image_hsv)
v_mean = np.mean(v)
print(f"v_mean{v_mean}")
if v_mean < 60:
adjusted = apply_curve(image_bgr, lut)
adjusted2 = apply_curve(adjusted, lut)
cv2.imwrite(result_path, adjusted2)
return result_path
else:
image_name_result = image_path.split("/")[-1].replace(".jpg", "_o.jpg")
result_original_path = os.path.join(image_cache_dir, image_name_result)
shutil.copy(image_path,result_original_path)
return result_original_path
def apply_curve_down_image(image_path,image_cache_dir):
"""压暗"""
x_points = [0, 131, 255]
y_points = [0, 124, 255]
lut = generate_curve_lut(x_points, y_points)
# adjusted = apply_curve(img, lut)
image_name_result = image_path.split("/")[-1].replace(".jpg", "_down.jpg")
result_path= os.path.join(image_cache_dir,image_name_result)
image_bgr = cv2.imread(image_path)
image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)
image_hsv = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2HSV).astype(np.float32)
h, s, v = cv2.split(image_hsv)
v_mean = np.mean(v)
print(f"v_mean{v_mean}")
if v_mean > 110:
adjusted = apply_curve(image_bgr, lut)
adjusted2 = apply_curve(adjusted, lut)
cv2.imwrite(result_path, adjusted2)
return result_path
else:
image_name_result = image_path.split("/")[-1].replace(".jpg", "_o.jpg")
result_original_path = os.path.join(image_cache_dir, image_name_result)
shutil.copy(image_path, result_original_path)
return result_original_path
def sharpen_image(image_path, output_path):
"""
修复颜色问题的锐化处理函数
"""
# 1. 读取图片并确保RGB格式
image = cv2.imread(image_path)
if image is None:
raise ValueError("无法读取图片,请检查路径是否正确")
# 2. 转换为RGB并保持一致性
rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# 3. 使用PIL处理时不再转换
pil_img = Image.fromarray(rgb_image)
# 3.1 锐化处理
enhancer = ImageEnhance.Sharpness(pil_img)
sharpened = enhancer.enhance(2.0)
# 3.2 对比度增强
contrast_enhancer = ImageEnhance.Contrast(sharpened)
final_image = contrast_enhancer.enhance(1.2)
# 4. 转换回numpy数组
cv_image = np.array(final_image)
# 5. 修复颜色问题的非锐化掩蔽
# 先分离通道,分别处理,再合并
b, g, r = cv2.split(cv_image)
def unsharp_channel(channel):
blurred = cv2.GaussianBlur(channel, (0, 0), 3)
return cv2.addWeighted(channel, 1.5, blurred, -0.5, 0)
b_sharp = unsharp_channel(b)
g_sharp = unsharp_channel(g)
r_sharp = unsharp_channel(r)
# 合并通道
sharpened_cv = cv2.merge([b_sharp, g_sharp, r_sharp])
# 6. 保存结果(保持BGR格式)
cv2.imwrite(output_path, cv2.cvtColor(sharpened_cv, cv2.COLOR_RGB2BGR))
def correct_texture_image(input_path,image_result_dir,output_path):
""""""
image_cache_dir= os.path.join(image_result_dir,"cache")
os.makedirs(image_cache_dir, exist_ok=True)
input_path_cure_up = apply_curve_up_image(input_path,image_cache_dir)
input_path_cure_down_result = apply_curve_down_image(input_path_cure_up,image_cache_dir)
print("input_path_correct", input_path_cure_down_result)
shadow_up_path = input_path_cure_down_result.replace(".jpg", "_shadow_shadow_add_color_white_unsharp.jpg")
photoshop_actions_emulation(input_path_cure_down_result, shadow_up_path)
shutil.copy(shadow_up_path,output_path)
time.sleep(1)
try:
shutil.rmtree(image_cache_dir)
except:
print("删除文件错误")
return shadow_up_path
if __name__ == "__main__":
arg = argparse.ArgumentParser()
arg.add_argument('--input_path', type=str, default=f"")
arg.add_argument('--output_path', type=str, default=f"")
args = arg.parse_args()
image_result_dir=os.path.dirname(args.output_path)
os.makedirs(image_result_dir, exist_ok=True)
start_time= time.time()
correct_texture_image(args.input_path,image_result_dir,args.output_path)
end_time = time.time()
total_time = round(end_time - start_time, 2)
"""
DreamTechPS动作F7两次+Shift F7一次
F7加暗*2
Shift F7 公仔*1
公仔 加暗加暗加饱和度上色白位加白锐化
"""
Loading…
Cancel
Save