4 changed files with 920 additions and 2 deletions
@ -0,0 +1,245 @@ |
|||||||
|
import cv2, numpy as np, matplotlib.pyplot as plt, os, shutil, argparse, random, time, math |
||||||
|
from tqdm import tqdm |
||||||
|
|
||||||
|
def ps_color_scale_adjustment(image, shadow=0, highlight=255, midtones=1): |
||||||
|
''' |
||||||
|
模拟 PS 的色阶调整; 0 <= Shadow < Highlight <= 255 |
||||||
|
:param image: 传入的图片 |
||||||
|
:param shadow: 黑场(0-Highlight) |
||||||
|
:param highlight: 白场(Shadow-255) |
||||||
|
:param midtones: 灰场(9.99-0.01) |
||||||
|
:return: 图片 |
||||||
|
''' |
||||||
|
if highlight >255: |
||||||
|
highlight = 255 |
||||||
|
if shadow < 0: |
||||||
|
shadow = 0 |
||||||
|
if shadow >= highlight: |
||||||
|
shadow = highlight - 2 |
||||||
|
if midtones > 9.99: |
||||||
|
midtones = 9.99 |
||||||
|
if midtones < 0.01: |
||||||
|
midtones = 0.01 |
||||||
|
image = np.array(image, dtype=np.float16) |
||||||
|
# 计算白场 黑场离差 |
||||||
|
Diff = highlight - shadow |
||||||
|
image = image - shadow |
||||||
|
image[image < 0] = 0 |
||||||
|
image = (image / Diff) ** (1 / midtones) * 255 |
||||||
|
image[image > 255] = 255 |
||||||
|
image = np.array(image, dtype=np.uint8) |
||||||
|
|
||||||
|
return image |
||||||
|
|
||||||
|
# def show_histogram(image, image_id, save_hist_dir, min_threshold, max_threshold): |
||||||
|
# ''' |
||||||
|
# 画出直方图展示 |
||||||
|
# :param image: 导入图片 |
||||||
|
# :param image_id: 图片id编号 |
||||||
|
# :param save_hist_dir: 保存路径 |
||||||
|
# :param min_threshold: 最小阈值 |
||||||
|
# :param max_threshold: 最大阈值 |
||||||
|
# :return: 原图image,和裁剪原图直方图高低阈值后的图片image_change |
||||||
|
# ''' |
||||||
|
# plt.rcParams['font.family'] = 'SimHei' |
||||||
|
# plt.rcParams['axes.unicode_minus'] = False |
||||||
|
# plt.hist(image.ravel(), 254, range=(2, 256), density=False) |
||||||
|
# plt.hist(image.ravel(), 96, range=(2, 50), density=False) # 放大 range(0, 50),bins值最好是range的两倍,显得更稀疏,便于对比 |
||||||
|
# plt.hist(image.ravel(), 110, range=(200, 255), density=False) # 放大 range(225, 255) |
||||||
|
# plt.annotate('thresh1=' + str(min_threshold), # 文本内容 |
||||||
|
# xy=(min_threshold, 0), # 箭头指向位置 # 阈值设定值! |
||||||
|
# xytext=(min_threshold, 500000), # 文本位置 # 阈值设定值! |
||||||
|
# arrowprops=dict(facecolor='black', width=1, shrink=5, headwidth=2)) # 箭头 |
||||||
|
# plt.annotate('thresh2=' + str(max_threshold), # 文本内容 |
||||||
|
# xy=(max_threshold, 0), # 箭头指向位置 # 阈值设定值! |
||||||
|
# xytext=(max_threshold, 500000), # 文本位置 # 阈值设定值! |
||||||
|
# arrowprops=dict(facecolor='black', width=1, shrink=5, headwidth=2)) # 箭头 |
||||||
|
# # 在y轴上绘制一条直线 |
||||||
|
# # plt.axhline(y=10000, color='r', linestyle='--', linewidth=0.5) |
||||||
|
# plt.title(str(image_id)) |
||||||
|
# # plt.show() |
||||||
|
# # 保存直方图 |
||||||
|
# save_hist_name = os.path.join(save_hist_dir, f'{image_id}_{min_threshold}&{max_threshold}.jpg') |
||||||
|
# plt.savefig(save_hist_name) |
||||||
|
# # 清空画布, 防止重叠展示 |
||||||
|
# plt.clf() |
||||||
|
|
||||||
|
|
||||||
|
# def low_find_histogram_range(image, target_frequency): |
||||||
|
# ''' |
||||||
|
# 循环查找在 target_frequency (y)频次限制下的直方图区间值(x) |
||||||
|
# :param image: 导入图片 |
||||||
|
# :param target_frequency: 直方图 y 频次限制条件 |
||||||
|
# :return: 直方图区间 x,和 该区间频次 y |
||||||
|
# ''' |
||||||
|
# # 计算灰度直方图 |
||||||
|
# hist, bins = np.histogram(image, bins=256, range=[0, 256]) |
||||||
|
# # 初始化区间和频次 |
||||||
|
# interval = 2 |
||||||
|
# frequency = hist[255] |
||||||
|
# while frequency < target_frequency: |
||||||
|
# # 更新区间和频次 |
||||||
|
# interval += 1 |
||||||
|
# # 检查直方图的频次是否为None,如果频次是None,则将其设为0,这样可以避免将None和int进行比较报错。 |
||||||
|
# frequency = hist[interval] if hist[interval] is not None else 0 |
||||||
|
# frequency += hist[interval] if hist[interval] is not None else 0 |
||||||
|
# # 如果频次接近10000则停止循环 |
||||||
|
# if target_frequency - 2000 <= frequency <= target_frequency + 1000: |
||||||
|
# break |
||||||
|
# |
||||||
|
# return interval, frequency |
||||||
|
|
||||||
|
|
||||||
|
# def high_find_histogram_range(image, target_frequency): |
||||||
|
# ''' |
||||||
|
# 循环查找在 target_frequency (y)频次限制下的直方图区间值(x) |
||||||
|
# :param image: 导入图片 |
||||||
|
# :param target_frequency: 直方图 y 频次限制条件 |
||||||
|
# :return: 直方图区间 x,和 该区间频次 y |
||||||
|
# ''' |
||||||
|
# # 计算灰度直方图 |
||||||
|
# hist, bins = np.histogram(image, bins=256, range=[0, 256]) |
||||||
|
# # 初始化区间和频次 |
||||||
|
# interval = 255 |
||||||
|
# frequency = hist[255] |
||||||
|
# while frequency < target_frequency: |
||||||
|
# # 更新区间和频次 |
||||||
|
# interval -= 1 |
||||||
|
# # 检查直方图的频次是否为None,如果频次是None,则将其设为0,这样可以避免将None和int进行比较报错。 |
||||||
|
# frequency = hist[interval] if hist[interval] is not None else 0 |
||||||
|
# frequency += hist[interval] if hist[interval] is not None else 0 |
||||||
|
# # 如果频次接近10000则停止循环 |
||||||
|
# if target_frequency - 2000 <= frequency <= target_frequency + 2000: |
||||||
|
# break |
||||||
|
# |
||||||
|
# return interval, frequency |
||||||
|
|
||||||
|
def find_last_x(image, slope_threshold = 1000): |
||||||
|
x = [] |
||||||
|
y = [] |
||||||
|
hist, bins = np.histogram(image, bins=256, range=[0, 256]) |
||||||
|
|
||||||
|
#找到50以内的最高峰 |
||||||
|
max_y = 0 |
||||||
|
max_i = 5 |
||||||
|
for i in range(5, 25): |
||||||
|
if hist[i] > max_y: |
||||||
|
max_y = hist[i] |
||||||
|
max_i = i |
||||||
|
print(f'50以内最高峰值y:{max_y},最高峰位置x:{max_i}') |
||||||
|
|
||||||
|
for i in range(2, max_i): |
||||||
|
x.append(i) |
||||||
|
y.append(hist[i]) |
||||||
|
slopes = [abs(y[i + 1] - y[i]) for i in range(len(x) - 1)] |
||||||
|
|
||||||
|
current_interval = [] |
||||||
|
max_interval = [] |
||||||
|
max_x = {} |
||||||
|
for i, slope in enumerate(slopes): |
||||||
|
current_interval.append(slope) |
||||||
|
if slope >= slope_threshold: |
||||||
|
if len(current_interval) > len(max_interval): |
||||||
|
max_interval = current_interval.copy() |
||||||
|
max_x[x[i]] = slope |
||||||
|
current_interval = [] |
||||||
|
if not max_x: |
||||||
|
# 尝试降低阈值重新计算 |
||||||
|
return find_last_x(image, slope_threshold=slope_threshold // 2) |
||||||
|
print(max_x) |
||||||
|
|
||||||
|
last_x = list(max_x)[-1] |
||||||
|
last_y = max_x[last_x] |
||||||
|
return last_x, last_y |
||||||
|
|
||||||
|
def find_last_high(image, slope_threshold = 2500): |
||||||
|
x = [] |
||||||
|
y = [] |
||||||
|
hist, bins = np.histogram(image, bins=255, range=[2, 255]) |
||||||
|
|
||||||
|
#找到200以上的最高峰 |
||||||
|
max_y = 0 |
||||||
|
max_i = 254 |
||||||
|
for i in range(240, 255): |
||||||
|
if hist[i] > max_y: |
||||||
|
max_y = hist[i] |
||||||
|
max_i = i |
||||||
|
print(f'200以上的最高峰值y:{max_y},最高峰位置x:{max_i}') |
||||||
|
|
||||||
|
for i in range(max_i, 255): |
||||||
|
x.append(i) |
||||||
|
y.append(hist[i]) |
||||||
|
slopes = [abs(y[i + 1] - y[i]) for i in range(len(x) - 1)] |
||||||
|
|
||||||
|
current_interval = [] |
||||||
|
max_interval = [] |
||||||
|
max_x = {} |
||||||
|
find = False |
||||||
|
for i in range(len(slopes) - 1, -1, -1): |
||||||
|
slope = slopes[i] |
||||||
|
current_interval.append(slope) |
||||||
|
if slope >= slope_threshold: |
||||||
|
find = True |
||||||
|
if len(current_interval) > len(max_interval): |
||||||
|
max_interval = current_interval.copy() |
||||||
|
max_x[x[i]] = slope |
||||||
|
current_interval = [] |
||||||
|
#如果没有找到200以上很平,而且高度小于5000,就按240位置削平 |
||||||
|
if not find and hist[240] < 5000: |
||||||
|
max_x[240] = hist[240] |
||||||
|
|
||||||
|
|
||||||
|
print(max_x) |
||||||
|
if len(max_x) > 0: |
||||||
|
last_x = list(max_x)[0] |
||||||
|
last_y = max_x[last_x] |
||||||
|
if last_x < 240: |
||||||
|
last_x = 240 |
||||||
|
# last_y = max_x[last_x] |
||||||
|
else: |
||||||
|
print(f'找不到200以上曲线较平的区间,使用254作为最高峰') |
||||||
|
last_x = 254 |
||||||
|
last_y = hist[254] |
||||||
|
return last_x, last_y |
||||||
|
|
||||||
|
def remove_gray_and_sharpening(jpg_path,save_hist_dir): |
||||||
|
input_image = cv2.imread(jpg_path) |
||||||
|
filename = os.path.basename(jpg_path) |
||||||
|
# low_x_thresh, low_y_frequency = low_find_histogram_range(input_image, low_y_limit) |
||||||
|
low_x_thresh, low_y_frequency = find_last_x(input_image) |
||||||
|
# high_x_thresh, high_y_frequency = high_find_histogram_range(input_image, high_y_limit) |
||||||
|
high_x_thresh, high_y_frequency = find_last_high(input_image) |
||||||
|
# print(f"{low_x_thresh} 区间, {low_y_frequency} 频次") |
||||||
|
# print(f"{high_x_thresh} 区间, {high_y_frequency} 频次") |
||||||
|
output_filename = os.path.join(save_hist_dir, filename).replace('.jpg', f'_{low_x_thresh}_{high_x_thresh}.jpg') |
||||||
|
high_output_image = ps_color_scale_adjustment(input_image, shadow=low_x_thresh, highlight=high_x_thresh, midtones=1) |
||||||
|
# high_output_image = ps_color_scale_adjustment(low_ouput_image, shadow=0, highlight=high_x_thresh, midtones=1) |
||||||
|
|
||||||
|
# # 人体贴图和黑色背景交界处不进行锐化 |
||||||
|
# gray = cv2.cvtColor(input_image, cv2.COLOR_BGR2GRAY) |
||||||
|
# _, thresh = cv2.threshold(gray, 2, 255, cv2.THRESH_BINARY) |
||||||
|
# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (7, 7)) |
||||||
|
# gradient = cv2.morphologyEx(thresh, cv2.MORPH_GRADIENT, kernel) |
||||||
|
# roi_gradient = cv2.bitwise_and(high_output_image, high_output_image, mask=gradient) |
||||||
|
|
||||||
|
# # 锐化滤波器 |
||||||
|
# # sharpened_image = sharpening_filter(high_output_image) |
||||||
|
# sharpened_image = reduce_sharpness(high_output_image, factor=4) |
||||||
|
# # 将原图边界替换锐化后的图片边界 |
||||||
|
# sharpened_image[gradient != 0] = roi_gradient[gradient != 0] |
||||||
|
|
||||||
|
# 直方图标记并保存 |
||||||
|
# show_histogram(input_image, img_id, low_x_thresh, high_x_thresh) |
||||||
|
# cv2.imwrite(jpg_path, high_output_image, [cv2.IMWRITE_JPEG_QUALITY, 95]) # 保存图片的质量是原图的 95% |
||||||
|
cv2.imwrite(output_filename, high_output_image, [cv2.IMWRITE_JPEG_QUALITY, 95]) # 保存图片的质量是原图的 95% |
||||||
|
return output_filename |
||||||
|
|
||||||
|
if __name__ == '__main__': |
||||||
|
arg = argparse.ArgumentParser() |
||||||
|
arg.add_argument('--jpg_dir', type=str, default='/data/datasets_20t/fsdownload/image_color_timing/input') |
||||||
|
arg.add_argument('--save_hist_dir', type=str, default='/data/datasets_20t/fsdownload/image_color_timing/output') |
||||||
|
args = arg.parse_args() |
||||||
|
|
||||||
|
for img_id in tqdm(os.listdir(args.jpg_dir)): |
||||||
|
jpg_path = os.path.join(args.jpg_dir, img_id) |
||||||
|
remove_gray_and_sharpening(jpg_path,args.save_hist_dir) |
||||||
@ -0,0 +1,204 @@ |
|||||||
|
import os.path |
||||||
|
import numpy as np |
||||||
|
import cv2 |
||||||
|
import argparse |
||||||
|
import matplotlib.pyplot as plt |
||||||
|
|
||||||
|
def adjust_levels_image(img): |
||||||
|
"""""" |
||||||
|
img = img.astype(np.float32) |
||||||
|
img = 255 * ((img - 20) / (241 - 20)) |
||||||
|
img[img < 0] = 0 |
||||||
|
img[img > 255] = 255 |
||||||
|
img = 255 * np.power(img / 255.0, 1.0 / 1.34) |
||||||
|
img = (img / 255) * (255- 0) + 0 |
||||||
|
img[img < 0] = 0 |
||||||
|
img[img > 255] = 255 |
||||||
|
img = img.astype(np.uint8) |
||||||
|
return img |
||||||
|
|
||||||
|
|
||||||
|
def photoshop_style_feather(image, mask, radius=150): |
||||||
|
""" |
||||||
|
""" |
||||||
|
if mask.dtype != np.uint8: |
||||||
|
mask = (mask * 255).astype(np.uint8) |
||||||
|
if len(mask.shape) > 2: |
||||||
|
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY) |
||||||
|
kernel_size = max(3, int(2 * np.ceil(2 * radius) + 1)) |
||||||
|
expanded_size = (mask.shape[0] + 2 * radius, mask.shape[1] + 2 * radius) |
||||||
|
expanded_mask = np.zeros(expanded_size, dtype=np.uint8) |
||||||
|
center_y, center_x = radius, radius |
||||||
|
expanded_mask[center_y:center_y + mask.shape[0], |
||||||
|
center_x:center_x + mask.shape[1]] = mask |
||||||
|
|
||||||
|
blurred_expanded_mask = cv2.GaussianBlur( |
||||||
|
expanded_mask, |
||||||
|
(kernel_size, kernel_size), |
||||||
|
sigmaX=radius, |
||||||
|
sigmaY=radius, |
||||||
|
borderType=cv2.BORDER_REFLECT_101 |
||||||
|
) |
||||||
|
|
||||||
|
feathered_mask = blurred_expanded_mask[center_y:center_y + mask.shape[0], |
||||||
|
center_x:center_x + mask.shape[1]] |
||||||
|
|
||||||
|
feathered_mask = feathered_mask.astype(np.float32) / 255.0 |
||||||
|
feathered_mask = np.power(feathered_mask, 1.1) # 轻微增强对比度 |
||||||
|
feathered_mask = np.clip(feathered_mask * 255, 0, 255).astype(np.uint8) |
||||||
|
|
||||||
|
return feathered_mask |
||||||
|
|
||||||
|
def calculate_luminance(img): |
||||||
|
"""""" |
||||||
|
if len(img.shape) == 3: |
||||||
|
ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb) |
||||||
|
return ycrcb[:, :, 0].astype(np.float32) / 255.0 |
||||||
|
else: |
||||||
|
return img.astype(np.float32) / 255.0 |
||||||
|
|
||||||
|
|
||||||
|
def photoshop_feather_blend(adjusted_img, original_img, mask, feather_radius=150, brightness_factor=0.95): |
||||||
|
""" |
||||||
|
""" |
||||||
|
if mask.dtype != np.uint8: |
||||||
|
mask = (mask * 255).astype(np.uint8) |
||||||
|
if len(mask.shape) > 2: |
||||||
|
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY) |
||||||
|
# plt.figure(figsize=(10, 8)) |
||||||
|
# plt.imshow(mask, cmap='gray') |
||||||
|
# plt.title("Feathered Mask") |
||||||
|
# plt.axis('off') |
||||||
|
# plt.colorbar(label='Opacity') |
||||||
|
# plt.show() |
||||||
|
|
||||||
|
feathered_mask = photoshop_style_feather(original_img, mask, feather_radius) |
||||||
|
# plt.figure(figsize=(10, 8)) |
||||||
|
# plt.imshow(feathered_mask, cmap='gray') |
||||||
|
# plt.title("Feathered Mask") |
||||||
|
# plt.axis('off') |
||||||
|
# plt.colorbar(label='Opacity') |
||||||
|
# plt.show() |
||||||
|
feathered_mask_float = feathered_mask.astype(np.float32) / 255.0 |
||||||
|
|
||||||
|
if len(original_img.shape) == 3 and len(feathered_mask_float.shape) == 2: |
||||||
|
feathered_mask_float = np.stack([feathered_mask_float] * 3, axis=-1) |
||||||
|
|
||||||
|
def to_linear(img): |
||||||
|
img_linear = img.astype(np.float32) / 255.0 |
||||||
|
return np.where(img_linear <= 0.04045, |
||||||
|
img_linear / 12.92, |
||||||
|
((img_linear + 0.055) / 1.055) ** 2.4) |
||||||
|
|
||||||
|
def to_srgb(img_linear): |
||||||
|
return np.where(img_linear <= 0.0031308, |
||||||
|
img_linear * 12.92, |
||||||
|
1.055 * (img_linear ** (1 / 2.4)) - 0.055) |
||||||
|
|
||||||
|
adjusted_linear = to_linear(adjusted_img) |
||||||
|
original_linear = to_linear(original_img) |
||||||
|
|
||||||
|
luminance_adjustment = np.mean(original_linear, axis=-1, keepdims=True) * (1.0 - brightness_factor) |
||||||
|
adjusted_linear_corrected = adjusted_linear - luminance_adjustment |
||||||
|
|
||||||
|
blended_linear = (adjusted_linear_corrected * feathered_mask_float + |
||||||
|
original_linear * (1 - feathered_mask_float)) |
||||||
|
|
||||||
|
blended_srgb = to_srgb(blended_linear) |
||||||
|
blended_img = np.clip(blended_srgb * 255, 0, 255).astype(np.uint8) |
||||||
|
|
||||||
|
return blended_img |
||||||
|
|
||||||
|
|
||||||
|
def rgb2lab_image(rgb_img): |
||||||
|
"""""" |
||||||
|
rgb = rgb_img.astype(np.float32) / 255.0 |
||||||
|
|
||||||
|
mask = rgb > 0.04045 |
||||||
|
rgb = np.where(mask, |
||||||
|
np.power((rgb + 0.055) / 1.055, 2.4), |
||||||
|
rgb / 12.92) |
||||||
|
|
||||||
|
XYZ = np.dot(rgb, [ |
||||||
|
[0.436052025, 0.222491598, 0.013929122], |
||||||
|
[0.385081593, 0.716886060, 0.097097002], |
||||||
|
[0.143087414, 0.060621486, 0.714185470] |
||||||
|
]) |
||||||
|
|
||||||
|
XYZ *= np.array([100.0, 100.0, 100.0]) / [96.4221, 100.0, 82.5211] |
||||||
|
|
||||||
|
epsilon = 0.008856 |
||||||
|
kappa = 903.3 |
||||||
|
|
||||||
|
XYZ_norm = np.where(XYZ > epsilon, |
||||||
|
np.power(XYZ, 1 / 3), |
||||||
|
(kappa * XYZ + 16) / 116) |
||||||
|
|
||||||
|
L = 116 * XYZ_norm[..., 1] - 16 |
||||||
|
a = 500 * (XYZ_norm[..., 0] - XYZ_norm[..., 1]) |
||||||
|
b = 200 * (XYZ_norm[..., 1] - XYZ_norm[..., 2]) |
||||||
|
|
||||||
|
return np.stack([L, a, b], axis=-1) |
||||||
|
|
||||||
|
|
||||||
|
def photoshop_lab_color_range_optimized(bgr_img, target_lab, tolerance=59, anti_alias=True): |
||||||
|
"""""" |
||||||
|
|
||||||
|
rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB) |
||||||
|
lab_img = rgb2lab_image(rgb_img) |
||||||
|
|
||||||
|
L, a, b = lab_img[:, :, 0], lab_img[:, :, 1], lab_img[:, :, 2] |
||||||
|
target_L, target_a, target_b = target_lab |
||||||
|
|
||||||
|
diff_L = np.abs(L - target_L) |
||||||
|
diff_a = np.abs(a - target_a) |
||||||
|
diff_b = np.abs(b - target_b) |
||||||
|
|
||||||
|
dark_boost = np.ones_like(L) |
||||||
|
dark_mask = L <40 |
||||||
|
dark_boost[dark_mask] = 1.2 |
||||||
|
|
||||||
|
weighted_diff = np.sqrt( |
||||||
|
0.25 * (diff_L / 100) ** 2 + |
||||||
|
0.75 * ((diff_a + diff_b) / 255) ** 2 |
||||||
|
) * 100 |
||||||
|
|
||||||
|
weighted_diff = weighted_diff / dark_boost |
||||||
|
|
||||||
|
threshold = 1.6 * (100 - tolerance) / 100 * 23 |
||||||
|
|
||||||
|
normalized_diff = weighted_diff / threshold |
||||||
|
mask = 0.5 * (np.tanh(4 * (1 - normalized_diff)) + 1) |
||||||
|
|
||||||
|
if anti_alias: |
||||||
|
mask = cv2.GaussianBlur(mask, (5, 5), 0) |
||||||
|
|
||||||
|
return mask |
||||||
|
|
||||||
|
def photoshop_actions_emulation(input_path, output_path): |
||||||
|
"""""" |
||||||
|
original_img = cv2.imread(input_path) |
||||||
|
target_lab = np.array([47.89, 20.31, 20.6], dtype=np.float32) |
||||||
|
tol= 81 |
||||||
|
mask = photoshop_lab_color_range_optimized(original_img, target_lab, tol) |
||||||
|
mask_uint8 = (mask * 255).astype(np.uint8) |
||||||
|
adjusted_img = adjust_levels_image(original_img) |
||||||
|
result = photoshop_feather_blend(adjusted_img, original_img, mask_uint8, |
||||||
|
feather_radius=15, brightness_factor=0.95) |
||||||
|
cv2.imwrite(output_path, result) |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__': |
||||||
|
arg = argparse.ArgumentParser() |
||||||
|
arg.add_argument('--image_name', type=str, default='274351Tex1_adjusted060518_2_221.jpg') |
||||||
|
arg.add_argument('--image_name_new', type=str, default='274351Tex1_adjusted060518_2_221_999999.jpg') |
||||||
|
arg.add_argument('--in_dir', type=str, default='/data/datasets_20t/fsdownload/image_color_timing/output/') |
||||||
|
arg.add_argument('--out_dir', type=str, default='/data/datasets_20t/fsdownload/image_color_timing/shadow_up/') |
||||||
|
args = arg.parse_args() |
||||||
|
os.makedirs(args.out_dir,exist_ok=True) |
||||||
|
input_path = os.path.join(args.in_dir,args.image_name) |
||||||
|
output_path = os.path.join(args.out_dir,args.image_name_new) |
||||||
|
photoshop_actions_emulation(input_path, output_path) |
||||||
|
|
||||||
|
|
||||||
@ -0,0 +1,469 @@ |
|||||||
|
import os.path |
||||||
|
import shutil |
||||||
|
import time |
||||||
|
import argparse |
||||||
|
import cv2 |
||||||
|
import numpy as np |
||||||
|
from scipy.interpolate import CubicSpline |
||||||
|
import sys, os |
||||||
|
sys.path.append(os.path.dirname(os.path.abspath(__file__))) |
||||||
|
from fix_up_color_two_a import remove_gray_and_sharpening |
||||||
|
from ps_image_shadow_up_ag_two_a import photoshop_actions_emulation |
||||||
|
|
||||||
|
|
||||||
|
# def perceptual_adjustment(img, threshold=220, reduction=0.5): |
||||||
|
# hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) |
||||||
|
# h, s, v = cv2.split(hsv) |
||||||
|
# |
||||||
|
# saturation_weights = 1 - (s.astype(np.float32) / 255 * 0.01) |
||||||
|
# |
||||||
|
# adjusted_v = np.where( |
||||||
|
# v > threshold, |
||||||
|
# threshold + (v - threshold) * (1 - reduction * saturation_weights), |
||||||
|
# v |
||||||
|
# ) |
||||||
|
# |
||||||
|
# return cv2.cvtColor(cv2.merge([h, s, adjusted_v.astype(np.uint8)]), cv2.COLOR_HSV2BGR) |
||||||
|
|
||||||
|
|
||||||
|
# def perceptual_smooth_adjustment(img, threshold=220, reduction=0.5,margin=5, saturation_sensitivity=0.3): |
||||||
|
# """ |
||||||
|
# 感知式亮度压制 + 过渡区平滑(防止硬边) |
||||||
|
# |
||||||
|
# 参数: |
||||||
|
# - threshold: 高光压制起点 |
||||||
|
# - margin: 过渡带宽度(像素值差) |
||||||
|
# - reduction: 压制比例(1 表示最多降低100%) |
||||||
|
# - saturation_sensitivity: 饱和度影响权重 |
||||||
|
# """ |
||||||
|
# hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) |
||||||
|
# h, s, v = cv2.split(hsv) |
||||||
|
# |
||||||
|
# v = v.astype(np.float32) |
||||||
|
# s = s.astype(np.float32) |
||||||
|
# |
||||||
|
# # 1. 饱和度感知权重(饱和度越高,压制越弱) |
||||||
|
# sat_weight = 1.0 - (s / 255.0 * saturation_sensitivity) |
||||||
|
# sat_weight = np.clip(sat_weight, 0.0, 1.0) |
||||||
|
# |
||||||
|
# # 2. 构建平滑过渡权重(根据 V 值) |
||||||
|
# transition_mask = np.zeros_like(v, dtype=np.float32) |
||||||
|
# transition_mask[v <= threshold] = 0.0 |
||||||
|
# transition_mask[v >= threshold + margin] = 1.0 |
||||||
|
# |
||||||
|
# # 线性过渡区域 |
||||||
|
# in_between = (v > threshold) & (v < threshold + margin) |
||||||
|
# transition_mask[in_between] = (v[in_between] - threshold) / margin |
||||||
|
# |
||||||
|
# # 3. 计算最终压制权重(融合过渡 + 饱和度感知) |
||||||
|
# weight = reduction * transition_mask * sat_weight |
||||||
|
# |
||||||
|
# # 4. 应用压制 |
||||||
|
# v_adjusted = v - (v - threshold) * weight |
||||||
|
# v_adjusted = np.clip(v_adjusted, 0, 255).astype(np.uint8) |
||||||
|
# |
||||||
|
# # 5. 合成并返回 |
||||||
|
# adjusted_hsv = cv2.merge([h, s.astype(np.uint8), v_adjusted]) |
||||||
|
# result_bgr = cv2.cvtColor(adjusted_hsv, cv2.COLOR_HSV2BGR) |
||||||
|
# |
||||||
|
# return result_bgr |
||||||
|
|
||||||
|
def smootherstep(x): |
||||||
|
"""五次平滑插值函数:更加平滑过渡""" |
||||||
|
return x**3 * (x * (x * 6 - 15) + 10) |
||||||
|
|
||||||
|
|
||||||
|
def perceptual_smooth_adjustment_color_blend(img, threshold=220, reduction=0.5, margin=10, saturation_sensitivity=0.3, blur_radius=5, color_blend_strength=0.5): |
||||||
|
""" |
||||||
|
更平滑、颜色融合感知亮度压制 |
||||||
|
|
||||||
|
- threshold: 压制起始亮度(V 通道) |
||||||
|
- reduction: 压制强度(0-1) |
||||||
|
- margin: 阈值过渡区间(像素亮度差) |
||||||
|
- saturation_sensitivity: 饱和度高时减弱压制 |
||||||
|
- blur_radius: 用于颜色融合的模糊半径 |
||||||
|
- color_blend_strength: 颜色融合程度(0~1) |
||||||
|
""" |
||||||
|
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) |
||||||
|
h, s, v = cv2.split(hsv) |
||||||
|
|
||||||
|
v = v.astype(np.float32) |
||||||
|
s = s.astype(np.float32) |
||||||
|
|
||||||
|
# 饱和度感知压制减弱 |
||||||
|
sat_weight = 1.0 - (s / 255.0 * saturation_sensitivity) |
||||||
|
sat_weight = np.clip(sat_weight, 0.0, 1.0) |
||||||
|
|
||||||
|
# 平滑压制权重计算 |
||||||
|
delta = v - threshold |
||||||
|
transition = np.zeros_like(v, dtype=np.float32) |
||||||
|
|
||||||
|
in_range = (delta > 0) & (delta < margin) |
||||||
|
transition[in_range] = smootherstep(delta[in_range] / margin) |
||||||
|
transition[delta >= margin] = 1.0 |
||||||
|
|
||||||
|
# 压制权重融合 |
||||||
|
weight = reduction * transition * sat_weight |
||||||
|
|
||||||
|
# 应用压制 |
||||||
|
v_new = v - (v - threshold) * weight |
||||||
|
v_new = np.clip(v_new, 0, 255).astype(np.uint8) |
||||||
|
|
||||||
|
# 合成压制后的图像 |
||||||
|
adjusted_hsv = cv2.merge([h, s.astype(np.uint8), v_new]) |
||||||
|
adjusted = cv2.cvtColor(adjusted_hsv, cv2.COLOR_HSV2BGR) |
||||||
|
|
||||||
|
# ------------------- |
||||||
|
# 融合原图模糊版 → 减少颜色突兀 |
||||||
|
# ------------------- |
||||||
|
blurred = cv2.GaussianBlur(img, (blur_radius | 1, blur_radius | 1), 0) |
||||||
|
|
||||||
|
# 构建融合权重 mask,仅对过渡区域起作用 |
||||||
|
color_blend_mask = np.clip(weight, 0, 1) * color_blend_strength |
||||||
|
color_blend_mask = color_blend_mask[..., None] # 扩展为 (H,W,1) 用于通道融合 |
||||||
|
|
||||||
|
# 融合颜色(让压制后的颜色更靠近周围环境) |
||||||
|
final = adjusted.astype(np.float32) * (1 - color_blend_mask) + blurred.astype(np.float32) * color_blend_mask |
||||||
|
final = np.clip(final, 0, 255).astype(np.uint8) |
||||||
|
|
||||||
|
return final |
||||||
|
|
||||||
|
# def perceptual_smooth_adjustment(img, threshold=220, reduction=0.5, margin=10, saturation_sensitivity=0.3, blur_radius=3): |
||||||
|
# """ |
||||||
|
# 感知式亮度压制 + 平滑过渡 + 边缘柔化 |
||||||
|
# |
||||||
|
# 参数: |
||||||
|
# - threshold: 开始压制的亮度阈值 |
||||||
|
# - reduction: 最大压制比例(1 表示压到底) |
||||||
|
# - margin: 过渡宽度(单位是亮度值差) |
||||||
|
# - saturation_sensitivity: 饱和度越高,压制越弱 |
||||||
|
# - blur_radius: 最终压制结果边缘模糊程度(建议 3) |
||||||
|
# """ |
||||||
|
# # 转 HSV 获取亮度与饱和度 |
||||||
|
# hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) |
||||||
|
# h, s, v = cv2.split(hsv) |
||||||
|
# |
||||||
|
# v = v.astype(np.float32) |
||||||
|
# s = s.astype(np.float32) |
||||||
|
# |
||||||
|
# # 1. 饱和度影响(越高压制越少) |
||||||
|
# sat_weight = 1.0 - (s / 255.0 * saturation_sensitivity) |
||||||
|
# sat_weight = np.clip(sat_weight, 0.0, 1.0) |
||||||
|
# |
||||||
|
# # 2. 构造更平滑的过渡权重(使用 smootherstep) |
||||||
|
# delta = v - threshold |
||||||
|
# transition = np.zeros_like(v, dtype=np.float32) |
||||||
|
# |
||||||
|
# in_range = (delta > 0) & (delta < margin) |
||||||
|
# transition[in_range] = smootherstep(delta[in_range] / margin) |
||||||
|
# transition[delta >= margin] = 1.0 # 完全压制区域 |
||||||
|
# |
||||||
|
# # 3. 亮度压制权重 |
||||||
|
# weight = reduction * transition * sat_weight |
||||||
|
# |
||||||
|
# # 4. 应用压制 |
||||||
|
# v_new = v - (v - threshold) * weight |
||||||
|
# v_new = np.clip(v_new, 0, 255).astype(np.uint8) |
||||||
|
# |
||||||
|
# # 5. 合并回 HSV 并转回 BGR |
||||||
|
# adjusted_hsv = cv2.merge([h, s.astype(np.uint8), v_new]) |
||||||
|
# result = cv2.cvtColor(adjusted_hsv, cv2.COLOR_HSV2BGR) |
||||||
|
# |
||||||
|
# # 6. 进一步边缘模糊(仅作用于过渡区域) |
||||||
|
# blur_mask = (transition > 0.0) & (transition < 1.0) |
||||||
|
# blur_mask = blur_mask.astype(np.uint8) * 255 |
||||||
|
# blur_mask = cv2.GaussianBlur(blur_mask, (blur_radius|1, blur_radius|1), 0) |
||||||
|
# |
||||||
|
# # 创建模糊版本 |
||||||
|
# blurred = cv2.GaussianBlur(result, (blur_radius|1, blur_radius|1), 0) |
||||||
|
# |
||||||
|
# # 混合:边缘模糊区域取模糊图,其他保持原图 |
||||||
|
# blur_mask = blur_mask.astype(np.float32) / 255.0 |
||||||
|
# result = result.astype(np.float32) |
||||||
|
# blurred = blurred.astype(np.float32) |
||||||
|
# |
||||||
|
# final = result * (1 - blur_mask[..., None]) + blurred * blur_mask[..., None] |
||||||
|
# final = np.clip(final, 0, 255).astype(np.uint8) |
||||||
|
# |
||||||
|
# return final |
||||||
|
|
||||||
|
def process_image(input_path, output_path, threshold=210, reduction=0.6): |
||||||
|
""" |
||||||
|
""" |
||||||
|
try: |
||||||
|
img = cv2.imread(input_path) |
||||||
|
if img is None: |
||||||
|
raise ValueError("无法读取图像,请检查路径是否正确") |
||||||
|
|
||||||
|
#result = perceptual_adjustment(img, threshold, reduction) |
||||||
|
result = perceptual_smooth_adjustment_color_blend(img, threshold, reduction) |
||||||
|
|
||||||
|
cv2.imwrite(output_path, result) |
||||||
|
print(f"处理成功,结果已保存到: {output_path}") |
||||||
|
|
||||||
|
return True |
||||||
|
|
||||||
|
except Exception as e: |
||||||
|
print(f"处理失败: {str(e)}") |
||||||
|
return False |
||||||
|
|
||||||
|
def sigmoid(x, center=0.0, slope=10.0): |
||||||
|
return 1 / (1 + np.exp(-slope * (x - center))) |
||||||
|
|
||||||
|
|
||||||
|
def reduce_highlights_lab_advanced_hsvmask( |
||||||
|
img, |
||||||
|
highlight_thresh=220, |
||||||
|
strength=30, |
||||||
|
sigma=15, |
||||||
|
detail_boost=1.0, |
||||||
|
preserve_local_contrast=True |
||||||
|
): |
||||||
|
""" |
||||||
|
LAB高光压制 + HSV感知蒙版 + 细节保留 |
||||||
|
""" |
||||||
|
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) |
||||||
|
V = hsv[:, :, 2].astype(np.float32) |
||||||
|
|
||||||
|
# 1. 生成高光 mask,过渡平滑 |
||||||
|
mask = sigmoid(V, center=highlight_thresh, slope=0.05) |
||||||
|
mask = np.clip(mask, 0, 1) |
||||||
|
mask = cv2.GaussianBlur(mask, (0, 0), sigmaX=2) |
||||||
|
|
||||||
|
mask_vis = (mask * 255).astype(np.uint8) |
||||||
|
|
||||||
|
# 2. LAB 空间亮度压制 |
||||||
|
img_lab = cv2.cvtColor(img, cv2.COLOR_BGR2Lab) |
||||||
|
L, a, b = cv2.split(img_lab) |
||||||
|
L = L.astype(np.float32) |
||||||
|
|
||||||
|
# 3. 模糊和细节 |
||||||
|
L_blur = cv2.GaussianBlur(L, (0, 0), sigma) |
||||||
|
L_detail = L - L_blur |
||||||
|
|
||||||
|
# 4. 替代方案:压制 L,但融合方式更柔和 |
||||||
|
L_target = L_blur - strength * mask |
||||||
|
L_target = np.clip(L_target, 0, 255) |
||||||
|
|
||||||
|
if preserve_local_contrast: |
||||||
|
# 保留细节 + 局部对比度(避免过度平滑) |
||||||
|
L_new = L_target + detail_boost * L_detail |
||||||
|
else: |
||||||
|
# 单纯压制亮度 |
||||||
|
L_new = L_target |
||||||
|
|
||||||
|
L_new = np.clip(L_new, 0, 255).astype(np.uint8) |
||||||
|
|
||||||
|
# 5. 合成回去 |
||||||
|
lab_new = cv2.merge([L_new, a, b]) |
||||||
|
result = cv2.cvtColor(lab_new, cv2.COLOR_Lab2BGR) |
||||||
|
|
||||||
|
return result, mask_vis |
||||||
|
|
||||||
|
def suppress_highlights_keep_texture(image_bgr, v_thresh=225, target_v=215, sigma=1): |
||||||
|
"""""" |
||||||
|
|
||||||
|
image_hsv = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2HSV) |
||||||
|
h, s, v = cv2.split(image_hsv) |
||||||
|
v = v.astype(np.float32) |
||||||
|
|
||||||
|
v_blur = cv2.GaussianBlur(v, (0, 0), sigmaX=sigma) |
||||||
|
detail = v - v_blur |
||||||
|
|
||||||
|
# 构建 soft mask(0~1),用于动态压制 |
||||||
|
mask = (v_blur > v_thresh).astype(np.float32) |
||||||
|
# weight 越大压得越狠 |
||||||
|
weight = np.clip((v_blur - v_thresh) / 20.0, 0, 1) * mask # 20 是压制带宽 |
||||||
|
#weight =weight*1.2 |
||||||
|
# 将亮度压到 target_v 的线性混合: |
||||||
|
v_compress = v_blur * (1 - weight) + target_v * weight |
||||||
|
|
||||||
|
v_new = v_compress + detail |
||||||
|
v_new = np.clip(v_new, 0, 255).astype(np.uint8) |
||||||
|
|
||||||
|
hsv_new = cv2.merge([h, s, v_new]) |
||||||
|
result_bgr = cv2.cvtColor(hsv_new, cv2.COLOR_HSV2BGR) |
||||||
|
|
||||||
|
return result_bgr |
||||||
|
|
||||||
|
def correct_light_again_hsv(image_path): |
||||||
|
img = cv2.imread(image_path) |
||||||
|
result, mask_vis = reduce_highlights_lab_advanced_hsvmask( |
||||||
|
img, |
||||||
|
highlight_thresh=225, |
||||||
|
strength=15, |
||||||
|
sigma=10, |
||||||
|
detail_boost=1.2 |
||||||
|
) |
||||||
|
result_bgr= suppress_highlights_keep_texture(result) |
||||||
|
output_image_path = image_path.replace(".jpg", "_light02.jpg") |
||||||
|
cv2.imwrite( |
||||||
|
output_image_path, |
||||||
|
result_bgr |
||||||
|
) |
||||||
|
return output_image_path |
||||||
|
|
||||||
|
def generate_curve_lut(x_points, y_points): |
||||||
|
""" |
||||||
|
输入采样点,生成 256 长度的查找表(LUT) |
||||||
|
""" |
||||||
|
cs = CubicSpline(x_points, y_points, bc_type='natural') |
||||||
|
x = np.arange(256) |
||||||
|
y = cs(x) |
||||||
|
y = np.clip(y, 0, 255).astype(np.uint8) |
||||||
|
return y |
||||||
|
|
||||||
|
def apply_curve(img, lut): |
||||||
|
""" |
||||||
|
对图像的每个通道应用曲线 LUT(复合通道) |
||||||
|
""" |
||||||
|
result = cv2.LUT(img, lut) |
||||||
|
return result |
||||||
|
|
||||||
|
|
||||||
|
def apply_curve_up_image(image_path,image_cache_dir): |
||||||
|
"""提亮""" |
||||||
|
x_points = [0, 124, 255] |
||||||
|
y_points = [0, 131, 255] |
||||||
|
lut = generate_curve_lut(x_points, y_points) |
||||||
|
#adjusted = apply_curve(img, lut) |
||||||
|
|
||||||
|
image_name_result = image_path.split("/")[-1].replace(".jpg", "_up.jpg") |
||||||
|
result_path= os.path.join(image_cache_dir,image_name_result) |
||||||
|
count=0 |
||||||
|
while True: |
||||||
|
# image_path="/data/datasets_20t/Downloads_google/correct_show_obj/265340/265340Tex1.jpg" |
||||||
|
# result_path = "/data/datasets_20t/Downloads_google/correct_show_obj/265340/265340Tex1_new.jpg" |
||||||
|
|
||||||
|
if os.path.exists(result_path): |
||||||
|
image_bgr = cv2.imread(result_path) |
||||||
|
else: |
||||||
|
image_bgr = cv2.imread(image_path) |
||||||
|
|
||||||
|
image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB) |
||||||
|
image_hsv = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2HSV).astype(np.float32) |
||||||
|
h, s, v = cv2.split(image_hsv) |
||||||
|
h_mean = np.mean(h) |
||||||
|
s_mean = np.mean(s) |
||||||
|
v_mean = np.mean(v) |
||||||
|
print(f"v_mean{v_mean}") |
||||||
|
if v_mean<60: |
||||||
|
adjusted = apply_curve(image_bgr, lut) |
||||||
|
cv2.imwrite(result_path, adjusted) |
||||||
|
time.sleep(1) |
||||||
|
count=count+1 |
||||||
|
else: |
||||||
|
break |
||||||
|
if count>=1: |
||||||
|
cv2.imwrite(result_path, adjusted) |
||||||
|
time.sleep(1) |
||||||
|
break |
||||||
|
if os.path.exists(result_path): |
||||||
|
return result_path |
||||||
|
else: |
||||||
|
return None |
||||||
|
|
||||||
|
def apply_curve_down_image(image_path,image_cache_dir): |
||||||
|
"""压暗""" |
||||||
|
x_points = [0, 131, 255] |
||||||
|
y_points = [0, 124, 255] |
||||||
|
lut = generate_curve_lut(x_points, y_points) |
||||||
|
# adjusted = apply_curve(img, lut) |
||||||
|
image_name_result = image_path.split("/")[-1].replace(".jpg", "_down.jpg") |
||||||
|
result_path= os.path.join(image_cache_dir,image_name_result) |
||||||
|
count = 0 |
||||||
|
while True: |
||||||
|
# image_path="/data/datasets_20t/Downloads_google/correct_show_obj/265340/265340Tex1.jpg" |
||||||
|
# result_path = "/data/datasets_20t/Downloads_google/correct_show_obj/265340/265340Tex1_new.jpg" |
||||||
|
|
||||||
|
if os.path.exists(result_path): |
||||||
|
image_bgr = cv2.imread(result_path) |
||||||
|
else: |
||||||
|
image_bgr = cv2.imread(image_path) |
||||||
|
|
||||||
|
image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB) |
||||||
|
image_hsv = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2HSV).astype(np.float32) |
||||||
|
h, s, v = cv2.split(image_hsv) |
||||||
|
h_mean = np.mean(h) |
||||||
|
s_mean = np.mean(s) |
||||||
|
v_mean = np.mean(v) |
||||||
|
print(f"v_mean{v_mean}") |
||||||
|
if v_mean > 110: |
||||||
|
adjusted = apply_curve(image_bgr, lut) |
||||||
|
cv2.imwrite(result_path, adjusted) |
||||||
|
time.sleep(1) |
||||||
|
count=count+1 |
||||||
|
else: |
||||||
|
break |
||||||
|
|
||||||
|
if count >= 1: |
||||||
|
cv2.imwrite(result_path, adjusted) |
||||||
|
time.sleep(1) |
||||||
|
break |
||||||
|
if os.path.exists(result_path): |
||||||
|
return result_path |
||||||
|
else: |
||||||
|
return None |
||||||
|
|
||||||
|
|
||||||
|
def correct_texture_image(input_path,image_result_dir,output_path): |
||||||
|
"""""" |
||||||
|
#input_path = os.path.join(image_in_dir, image_name) |
||||||
|
|
||||||
|
params = { |
||||||
|
'threshold': 220, |
||||||
|
'reduction': 0.6 |
||||||
|
} |
||||||
|
image_cache_dir= os.path.join(image_result_dir,"cache") |
||||||
|
os.makedirs(image_cache_dir, exist_ok=True) |
||||||
|
|
||||||
|
|
||||||
|
input_path_cure_up = apply_curve_up_image(input_path,image_cache_dir) |
||||||
|
if input_path_cure_up: |
||||||
|
input_path_cure_down = input_path_cure_up |
||||||
|
else: |
||||||
|
input_path_cure_down = input_path |
||||||
|
|
||||||
|
input_path_cure_down_result = apply_curve_down_image(input_path_cure_down,image_cache_dir) |
||||||
|
if input_path_cure_down_result: |
||||||
|
input_path_correct = input_path_cure_down_result |
||||||
|
else: |
||||||
|
input_path_correct = input_path_cure_down |
||||||
|
|
||||||
|
print("input_path_correct", input_path_correct) |
||||||
|
#image_name = input_path_correct.split("/")[-1] |
||||||
|
#out_put_path = os.path.join(image_cache_dir, image_name) |
||||||
|
image_light_down_fix_up_path = remove_gray_and_sharpening(input_path_correct, image_cache_dir) |
||||||
|
|
||||||
|
shadow_up_path = image_light_down_fix_up_path.replace(".jpg", "_shadow_up.jpg") |
||||||
|
photoshop_actions_emulation(image_light_down_fix_up_path, shadow_up_path) |
||||||
|
|
||||||
|
output_light_up_path = shadow_up_path.replace(".jpg", "_light_down.jpg") |
||||||
|
process_image(shadow_up_path, output_light_up_path, **params) |
||||||
|
#output_result_image_path=correct_light_again_hsv(output_light_up_path) |
||||||
|
shutil.copy(output_light_up_path,output_path) |
||||||
|
time.sleep(1) |
||||||
|
try: |
||||||
|
shutil.rmtree(image_cache_dir) |
||||||
|
except: |
||||||
|
print("删除文件错误") |
||||||
|
|
||||||
|
return output_light_up_path |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__": |
||||||
|
arg = argparse.ArgumentParser() |
||||||
|
arg.add_argument("-i","--image_path", type=str, default="") |
||||||
|
args = arg.parse_args() |
||||||
|
image_result_dir=os.path.dirname(args.image_path) |
||||||
|
os.makedirs(image_result_dir, exist_ok=True) |
||||||
|
|
||||||
|
start_time= time.time() |
||||||
|
correct_texture_image(args.image_path,image_result_dir,args.image_path) |
||||||
|
end_time = time.time() |
||||||
|
total_time = round(end_time - start_time, 2) |
||||||
|
print(f"处理成功,耗时 {total_time} 秒,") |
||||||
|
""" |
||||||
|
1、暗部提亮->白色提纯(220)->高光压暗->二次亮度调整 |
||||||
|
""" |
||||||
Loading…
Reference in new issue